Pappus's hexagon theorem
In mathematics, Pappus's hexagon theorem (attributed to Pappus of Alexandria) states that
It holds in a projective plane over any field, but fails for projective planes over any noncommutative division ring.[1] Projective planes in which the "theorem" is valid are called pappian planes.
If one considers a pappian plane containing a hexagon as just described but with sides and parallel and also sides and parallel (so that the Pappus line is the line at infinity), one gets the affine version of Pappus's theorem shown in the second diagram.
If the Pappus line and the lines have a point in common, one gets the so-called little version of Pappus's theorem.[2]
The dual of this incidence theorem states that given one set of concurrent lines , and another set of concurrent lines , then the lines defined by pairs of points resulting from pairs of intersections and and and are concurrent. (Concurrent means that the lines pass through one point.)
Pappus's theorem is a special case of Pascal's theorem for a conic—the limiting case when the conic degenerates into 2 straight lines. Pascal's theorem is in turn a special case of the Cayley–Bacharach theorem.
The Pappus configuration is the configuration of 9 lines and 9 points that occurs in Pappus's theorem, with each line meeting 3 of the points and each point meeting 3 lines. In general, the Pappus line does not pass through the point of intersection of and .[3] This configuration is self dual. Since, in particular, the lines have the properties of the lines of the dual theorem, and collinearity of is equivalent to concurrence of , the dual theorem is therefore just the same as the theorem itself. The Levi graph of the Pappus configuration is the Pappus graph, a bipartite distance-regular graph with 18 vertices and 27 edges.
Because of the principle of duality for projective planes the dual theorem of Pappus is true:
If 6 lines are chosen alternately from two pencils with centers , the lines
are concurrent, that means: they have a point in common.
The left diagram shows the projective version, the right one an affine version, where the points
are points at infinity. If point is on the line than one gets the "dual little theorem" of Pappus' theorem.
If in the affine version of the dual "little theorem" point is a point at infinity too, one gets Thomsen's theorem, a statement on 6 points on the sides of a triangle (see diagram). The Thomsen figure plays an essential role coordinatising an axiomatic defined projective plane.[6] The proof of the closure of Thomsen's figure is covered by the proof for the "little theorem", given above. But there exists a simple direct proof, too:
Because the statement of Thomsen's theorem (the closure of the figure) uses only the terms connect, intersect and parallel, the statement is affinely invariant, and one can introduce coordinates such that
(see right diagram). The starting point of the sequence of chords is One easily verifies the coordinates of the points given in the diagram, which shows: the last point coincides with the first point.
In addition to the above characterizations of Pappus's theorem and its dual, the following are equivalent statements: