Katana VentraIP

Parasitoid wasp

Parasitoid wasps are a large group of hymenopteran superfamilies, with all but the wood wasps (Orussoidea) being in the wasp-waisted Apocrita. As parasitoids, they lay their eggs on or in the bodies of other arthropods, sooner or later causing the death of these hosts. Different species specialise in hosts from different insect orders, most often Lepidoptera, though some select beetles, flies, or bugs; the spider wasps (Pompilidae) exclusively attack spiders.

Parasitoid wasp species differ in which host life-stage they attack: eggs, larvae, pupae, or adults. They mainly follow one of two major strategies within parasitism: either they are endoparasitic, developing inside the host, and koinobiont, allowing the host to continue to feed, develop, and moult; or they are ectoparasitic, developing outside the host, and idiobiont, paralysing the host immediately. Some endoparasitic wasps of the superfamily Ichneumonoidea have a mutualistic relationship with polydnaviruses, the viruses suppressing the host's immune defenses.[1]


Parasitoidism evolved only once in the Hymenoptera, during the Permian, leading to a single clade called Euhymenoptera,[2] but the parasitic lifestyle has secondarily been lost several times including among the ants, bees, and vespid wasps. As a result, the order Hymenoptera contains many families of parasitoids, intermixed with non-parasitoid groups. The parasitoid wasps include some very large groups, some estimates giving the Chalcidoidea as many as 500,000 species, the Ichneumonidae 100,000 species, and the Braconidae up to 50,000 species. Host insects have evolved a range of defences against parasitoid wasps, including hiding, wriggling, and camouflage markings.


Many parasitoid wasps are considered beneficial to humans because they naturally control agricultural pests. Some are applied commercially in biological pest control, starting in the 1920s with Encarsia formosa to control whitefly in greenhouses. Historically, parasitoidism in wasps influenced the thinking of Charles Darwin.[3]

Evolution and taxonomy[edit]

Evolution[edit]

Based on genetic and fossil analysis, parasitoidism has evolved only once in the Hymenoptera, during the Permian, leading to a single clade. All parasitoid wasps are descended from this lineage. The narrow-wasted Apocrita emerged during the Jurassic. [27][28][29][30] The Aculeata, which includes bees, ants, and parasitoid spider wasps, evolved from within the Apocrita; it contains many families of parasitoids, though not the Ichneumonoidea, Cynipoidea, and Chalcidoidea. The Hymenoptera, Apocrita, and Aculeata are all clades, but since each of these contains non-parasitic species, the parasitoid wasps, formerly known as the Parasitica, do not form a clade on their own.[30][31] The common ancestor in which parasitoidism evolved lived approximately 247 million years ago and was previously believed to be an ectoparasitoid wood wasp that fed on wood-boring beetle larvae. Species similar in lifestyle and morphology to this ancestor still exist in the Ichneumonoidea.[32][33] However, recent molecular and morphological analysis suggests this ancestor was endophagous, meaning it fed from within its host.[30] A significant radiation of species in the Hymenoptera occurred shortly after the evolution of parasitoidy in the order and is thought to have been a result of it.[31][33] The evolution of a wasp waist, a constriction in the abdomen of the Apocrita, contributed to rapid diversification as it increased maneuverability of the ovipositor, the organ off the rear segment of the abdomen used to lay eggs.[34]


The phylogenetic tree gives a condensed overview of the positions of parasitoidal groups (boldface), amongst groups (italics) like the Vespidae which have secondarily abandoned the parasitoid habit. The approximate numbers of species estimated to be in these groups, often much larger than the number so far described, is shown in parentheses, with estimates for the most populous also shown in boldface, like "(150,000)". Not all species in these groups are parasitoidal: for example, some Cynipoidea are phytophagous.