Katana VentraIP

Planetary differentiation

In planetary science, planetary differentiation is the process by which the chemical elements of a planetary body accumulate in different areas of that body, due to their physical or chemical behavior (e.g. density and chemical affinities). The process of planetary differentiation is mediated by partial melting with heat from radioactive isotope decay and planetary accretion. Planetary differentiation has occurred on planets, dwarf planets, the asteroid 4 Vesta, and natural satellites (such as the Moon).

Physical differentiation[edit]

Gravitational separation[edit]

High-density materials tend to sink through lighter materials. This tendency is affected by the relative structural strengths, but such strength is reduced at temperatures where both materials are plastic or molten. Iron, the most common element that is likely to form a very dense molten metal phase, tends to congregate towards planetary interiors. With it, many siderophile elements (i.e. materials that readily alloy with iron) also travel downward. However, not all heavy elements make this transition as some chalcophilic heavy elements bind into low-density silicate and oxide compounds, which differentiate in the opposite direction.


The main compositionally differentiated zones in the solid Earth are the very dense iron-rich metallic core, the less dense magnesium-silicate-rich mantle and the relatively thin, light crust composed mainly of silicates of aluminium, sodium, calcium and potassium. Even lighter still are the watery liquid hydrosphere and the gaseous, nitrogen-rich atmosphere.


Lighter materials tend to rise through material with a higher density. A light mineral such as plagioclase would rise. They may take on dome-shaped forms called diapirs when doing so. On Earth, salt domes are salt diapirs in the crust which rise through surrounding rock. Diapirs of molten low-density silicate rocks such as granite are abundant in the Earth's upper crust. The hydrated, low-density serpentinite formed by alteration of mantle material at subduction zones can also rise to the surface as diapirs. Other materials do likewise: a low-temperature, near-surface example is provided by mud volcanoes.

Chemical differentiation[edit]

Although bulk materials differentiate outward or inward according to their density, the elements that are chemically bound in them fractionate according to their chemical affinities, "carried along" by more abundant materials with which they are associated. For instance, although the rare element uranium is very dense as a pure element, it is chemically more compatible as a trace element in the Earth's light, silicate-rich crust than in the dense metallic core.[1]

Core formation mechanisms[edit]

Core formation utilizes several mechanisms in order to control the movement of metals into the interior of a planetary body. [3] Examples include percolation, diking, diapirism, and the direct delivery of impacts are mechanisms involved in this process.[3] The metal to silicate density difference causes percolation or the movement of a metal downward. Diking is a process in which a new rock formation forms within a fracture of a pre-existing rock body. For example, if minerals are cold and brittle, transport can occur through fluid cracks.[3] A sufficient amount of pressure must be met for a metal to successfully travel through the fracture toughness of the surrounding material. The size of the metal intruding and the viscosity of the surrounding material determines the rate of the sinking process.[3] The direct delivery of impacts occurs when an impactor of similar proportions strikes the target planetary body.[3] During the impact, there is an exchange of pre-existing cores containing metallic material.[3]


The planetary differentiation event is said to have most likely happened after the accretion process of either the asteroid or a planetary body. Terrestrial bodies and iron meteorites consist of Fe-Ni alloys.[4] The Earth's core is primarily composed Fe-Ni alloys. Based on the studies of short lived radionuclides, the results suggest that core formation process occurred during an early stage of the solar system.[4] Siderophile elements such as, sulfur, nickel, and cobalt can dissolve in molten iron; these elements help the differentiation of iron alloys.[4]


The first stages of accretion set up the groundwork for core formation. First, terrestrial planetary bodies enter a neighboring planet's orbit. Next, a collision would take place and the terrestrial body could either grow or shrink. However, in most cases, accretion requires multiple collisions of similar sized objects to have a major difference in the planet's growth.[3] Feeding zones and hit and run events are characteristics that can result after accretion.[3]

Core–mantle differentiation

Iron catastrophe

Rain-out model