Katana VentraIP

Plutonium-238

Plutonium-238 (238Pu or Pu-238) is a radioactive isotope of plutonium that has a half-life of 87.7 years.

General

238Pu

plutonium-238, 238Pu, Pu-238

94

144

87.7 years[1][2]

238.049553 Da

0

5.593

Plutonium-238 is a very powerful alpha emitter; as alpha particles are easily blocked, this makes the plutonium-238 isotope suitable for usage in radioisotope thermoelectric generators (RTGs) and radioisotope heater units. The density of plutonium-238 at room temperature is about 19.8 g/cc.[3] The material will generate about 0.57 watts per gram of 238Pu.[4]


The bare sphere critical mass of metallic plutonium-238 is not precisely known, but its calculated range is between 9.04 and 10.07 kilograms.[5]

History[edit]

Initial production[edit]

Plutonium-238 was the first isotope of plutonium to be discovered. It was synthesized by Glenn Seaborg and associates in December 1940 by bombarding uranium-238 with deuterons, creating neptunium-238.


238
92
U
+ 2
1
H
238
93
Np
+ 2
n



The neptunium isotope then undergoes β decay to plutonium-238, with a half-life of 2.12 days:[6]


238
93
Np
238
94
Pu
+
e
+
ν
e



Plutonium-238 naturally decays to uranium-234 and then further along the radium series to lead-206. Historically, most plutonium-238 has been produced by Savannah River in their weapons reactor, by irradiating neptunium-237 (half life 2.144 Ma) with neutrons.[7]


237
93
Np
+
n
238
93
Np



Neptunium-237 is a by-product of the production of plutonium-239 weapons-grade material, and when the site was shut down in 1988, 238Pu was mixed with about 16% 239Pu.[8]

Applications[edit]

The main application of 238Pu is as the heat source in radioisotope thermoelectric generators (RTGs). The RTG was invented in 1954 by Mound scientists Ken Jordan and John Birden, who were inducted into the National Inventors Hall of Fame in 2013.[48] They immediately produced a working prototype using a 210Po heat source, and on January 1, 1957, entered into an Army Signal Corps contract (R-65-8- 998 11-SC-03-91) to conduct research on radioactive materials and thermocouples suitable for the direct conversion of heat to electrical energy using polonium-210 as the heat source.


In 1966, a study reported by SAE International described the potential for the use of plutonium-238 in radioisotope power subsystems for applications in space. This study focused on employing power conversions through the Rankine cycle, Brayton cycle, thermoelectric conversion and thermionic conversion with plutonium-238 as the primary heating element. The heat supplied by the plutonium-238 heating element was consistent between the 400 °C and 1000 °C regime but future technology could reach an upper limit of 2000 °C, further increasing the efficiency of the power systems. The Rankine cycle study reported an efficiency between 15 and 19% with inlet turbine temperatures of 1800 R, whereas the Brayton cycle offered efficiency greater than 20% with an inlet temperature of 2000 R. Thermoelectric converters offered low efficiency (3-5%) but high reliability. Thermionic conversion could provide similar efficiencies to the Brayton cycle if proper conditions reached.[49]


RTG technology was first developed by Los Alamos National Laboratory during the 1960s and 1970s to provide radioisotope thermoelectric generator power for cardiac pacemakers. Of the 250 plutonium-powered pacemakers Medtronic manufactured, twenty-two were still in service more than twenty-five years later, a feat that no battery-powered pacemaker could achieve.[50]


This same RTG power technology has been used in spacecraft such as Pioneer 10 and 11, Voyager 1 and 2, Cassini–Huygens and New Horizons, and in other devices, such as the Mars Science Laboratory and Mars 2020 Perseverance Rover, for long-term nuclear power generation.[51]

Atomic battery

Plutonium-239

Polonium-210

Archived 2014-02-23 at the Wayback Machine

Story of Seaborg's discovery of Pu-238, especially pages 34–35.

NLM Hazardous Substances Databank – Plutonium, Radioactive