Katana VentraIP

Mushroom poisoning

Mushroom poisoning is poisoning resulting from the ingestion of mushrooms that contain toxic substances. Symptoms can vary from slight gastrointestinal discomfort to death in about 10 days. Mushroom toxins are secondary metabolites produced by the fungus.

Mushroom poisoning

Mycetism, mycetismus

Mushroom poisoning is usually the result of ingestion of wild mushrooms after misidentification of a toxic mushroom as an edible species. The most common reason for this misidentification is a close resemblance in terms of color and general morphology of the toxic mushrooms species with edible species. To prevent mushroom poisoning, mushroom gatherers familiarize themselves with the mushrooms they intend to collect, as well as with any similar-looking toxic species. The safety of eating wild mushrooms may depend on methods of preparation for cooking. Some toxins, such as amatoxins, are thermostable and mushrooms containing such toxins will not be rendered safe to eat by cooking.

: For 6–12 hours, there are no symptoms. This is followed by a period of gastrointestinal upset (vomiting and profuse, watery diarrhea). This stage is caused primarily by the phallotoxins[2] and typically lasts 24 hours. At the end of this second stage is when severe liver damage begins. The damage may continue for another 2–3 days. Kidney damage can also occur. Some patients will require a liver transplant.[3] Amatoxins are found in some mushrooms in the genus Amanita, but are also found in some species of Galerina and Lepiota.[4] Overall, mortality is between 10 and 15 percent.[5] Recently, Silybum marianum or blessed milk thistle has been shown to protect the liver from amanita toxins and promote regrowth of damaged cells.[6][7]

Alpha-Amanitin

: This toxin generally causes no symptoms for 3–20 days after ingestion. Typically around day 11, the process of kidney failure begins,[2] and is usually symptomatic by day 20. These symptoms can include pain in the area of the kidneys, thirst, vomiting, headache, and fatigue. A few species in the very large genus Cortinarius contain this toxin. People having eaten mushrooms containing orellanine may experience early symptoms as well, because the mushrooms often contain other toxins in addition to orellanine.[8] A related toxin that causes similar symptoms but within 3–6 days has been isolated from Amanita smithiana and some other related toxic Amanitas.[9]

Orellanine

: Muscarine stimulates the muscarinic receptors of the nerves and muscles. Symptoms include sweating, salivation, tears, blurred vision, palpitations, and, in high doses, respiratory failure.[10] Muscarine is found in mushrooms of the genus Omphalotus, notably the jack o' Lantern mushrooms. It is also found in A. muscaria, although it is now known that the main effect of this mushroom is caused by ibotenic acid. Muscarine can also be found in some Inocybe species and Clitocybe species, in particular Clitocybe dealbata, and some red-pored Boletes.[4]

Muscarine

: Stomach acids convert gyromitrin to monomethylhydrazine (MMH). It affects multiple body systems. It blocks the important neurotransmitter GABA, leading to stupor, delirium, muscle cramps, loss of coordination,[2] tremors, and/or seizures. It causes severe gastrointestinal irritation, leading to vomiting and diarrhea. In some cases, liver failure has been reported.[2] It can also cause red blood cells to break down, leading to jaundice, kidney failure, and signs of anemia. It is found in mushrooms of the genus Gyromitra.[3] A gyromitrin-like compound has also been identified in mushrooms of the genus Verpa.[11]

Gyromitrin

: Coprine is metabolized to a chemical that resembles disulfiram. It inhibits aldehyde dehydrogenase (ALDH), which, in general, causes no harm, unless the person has alcohol in their bloodstream while ALDH is inhibited. This can happen if alcohol is ingested shortly before or up to a few days after eating the mushrooms. In that case, the alcohol cannot be completely metabolized, and the person will experience flushed skin, vomiting, headache, dizziness, weakness, apprehension, confusion, palpitations, and sometimes trouble to breathe. Coprine is found mainly in mushrooms of the genus Coprinus, although similar effects have been noted after ingestion of Clitocybe clavipes.

Coprine

: Decarboxylates into muscimol upon ingestion. The effects of muscimol vary, but nausea and vomiting are common. Confusion, euphoria, or sleepiness are possible. Loss of muscular coordination, sweating, and chills are likely. Some people experience visual distortions, a feeling of strength, or delusions. Symptoms normally appear after 30 minutes to 2 hours and last for several hours. A. muscaria, the "Alice in Wonderland" mushroom, is known for the hallucinatory experiences caused by muscimol, but A. pantherina and A. gemmata also contain the same compound.[4] While normally self-limiting, fatalities have been associated with A. pantherina,[12] and consumption of a large number of any of these mushrooms is likely to be dangerous.

Ibotenic acid

: A sugar alcohol, similar to mannitol, which causes no harm in most people but causes gastrointestinal irritation in some. It is found in small amounts in oyster mushrooms, and considerable amounts in Suillus species and Hygrophoropsis aurantiaca (the "false chanterelle").[13]

Arabitol

Poisonous mushrooms contain a variety of different toxins that can differ markedly in toxicity. Symptoms of mushroom poisoning may vary from gastric upset to organ failure resulting in death. Serious symptoms do not always occur immediately after eating, often not until the toxin attacks the kidney or liver, sometimes days or weeks later.


The most common consequence of mushroom poisoning is simply gastrointestinal upset. Most "poisonous" mushrooms contain gastrointestinal irritants that cause vomiting and diarrhea (sometimes requiring hospitalization), but usually no long-term damage. However, there are a number of recognized mushroom toxins with specific, and sometimes deadly, effects:


The period between ingestion and the onset of symptoms varies dramatically between toxins, some taking days to show symptoms identifiable as mushroom poisoning.

(fly agaric) – Contains the psychoactive muscimol and the neurotoxin ibotenic acid. Ibotenic acid decarboxylates into muscimol upon curing of the mushroom, rendering it relatively non-toxic, though death via respiratory depression is possible. Muscimol intoxication is often considered unpleasant and undesirable, however, and as such has seen little recreational use compared to the unrelated psilocybin mushroom, though it has been used as an entheogen by the native people of Siberia.

Amanita muscaria

(panther mushroom) – contains similar toxins as A. muscaria, but is associated with more fatalities than A. muscaria.[12]

Amanita pantherina

(greengills) – causes intense gastrointestinal upset.

Chlorophyllum molybdites

(pinkgills) – some species are highly poisonous, such as livid entoloma (Entoloma sinuatum), Entoloma rhodopolium, and Entoloma nidorosum. Symptoms of intense gastrointestinal upset appear after 20 minutes to 4 hours, caused by an unidentified gastrointestinal irritant.[28]

Entoloma

Many species such as Inocybe fastigiata and Inocybe geophylla contain muscarine

Inocybe

has caused death.

Inosperma erubescens

Some white species, including C. rivulosa and C. dealbata – contain muscarine.[4]

Clitocybe

, Tricholoma tigrinum (tiger tricholoma) – gastrointestinal upset due to an unidentified toxin, begins in 15 minutes to 2 hours and lasts 4 to 6 days.

Tricholoma pardinum

(man-on-horseback) – until recently thought edible and good, can lead to rhabdomyolysis after repeated consumption.

Tricholoma equestre

/Naematoloma fasciculare (sulfur tuft) – usually causes gastrointestinal upset,[4] but the toxins fasciculol E and F could lead to paralysis and death.[29]

Hypholoma fasciculare

(brown roll-rim) – once thought edible, but now found to destroy red blood cells with regular or long-term consumption.[24]

Paxillus involutus

(Devil's bolete), Suillellus luridus, Rubroboletus legaliae, Chalciporus piperatus, Neoboletus luridiformis, Rubroboletus pulcherrimus – gastrointestinal irritation. Of these, only R. pulcherrimus has been implicated in a death. Many books list N. luridiformis as edible, but Arora[4] lists it as "to be avoided".

Rubroboletus satanas

(known as poison pie or fairy cakes) – causes gastrointestinal symptoms such as nausea and vomiting.

Hebeloma crustuliniforme

(the sickener) – as its name implies, causes rapid vomiting. Other Russulas with a peppery taste (Russula silvicola, Russula mairei) will likely do the same.[4]

Russula emetica

, Agaricus californicus, Agaricus praeclaresquamosus, Agaricus xanthodermus – cause vomiting and diarrhea in most people, although some people seem to be immune.[4]

Agaricus hondensis

, Lactarius torminosus, Lactarius rufus – these and other peppery-tasting milk-caps are pickled and eaten in Scandinavia, but are indigestible or poisonous unless correctly prepared.[4]

Lactifluus piperatus

, Lactarius uvidus – reported to be poisonous. Arora[4] reports that all yellow- or purple-staining Lactarius are "best avoided".

Lactarius vinaceorufescens

– causes indigestion in many people, although some seem immune.[4]

Ramaria gelatinosa

(the scaly chanterelle) – causes gastric upset in many people, although some eat it without problems. G. floccosus is sometimes confused with the chanterelle.[4]

Gomphus floccosus

Evolution[edit]

Many different species of mushrooms are poisonous and contain differing toxins that cause different types of harm. The most common toxin that causes severe poisoning is amatoxin, found in various mushroom species that cause the most fatalities every year. Amanita, or “ the death cap”, is a type of mushroom named for its substantial amount of amatoxin, which has about 10 mg per mushroom, which is the lethal dose. Amatoxin blocks the replication of DNA, which leads to cell death. This can affect cells that replicate frequently, such as kidneys, livers, and eventually, the central nervous system. It can also cause the loss of muscle contraction and liver failure. Despite the severe and dangerous symptoms, amatoxin poisoning is treatable given quick, professional care.[30]


Mushrooms have also been found to have evolved toxicity independently from each other. Researchers have found that different mushroom species share the same type of amatoxin called amanitin. They specifically looked at three of the deadliest species, Amanita, Galerina, and Lepiota. Through genome sequencing, a scientific process that determines the DNA sequence of an organism’s genome, closely related mushrooms obtained genetic information via horizontal gene transfer.[31] Once assimilated, it can then be passed down to an offspring. The researchers also concluded that there is “an unknown ancestral fungal donor[32],” that allowed for horizontal gene transfer.


Mushroom toxins have appeared and disappeared many times throughout their evolutionary history.[32] Many scientists believe that the toxins evolved in mushrooms are used to deter predation, either from fungivores or mammals.[33] If mushrooms are consumed, it can negatively affect their ability to disperse spores, survive, and reproduce. Snails and insects are fungivores and many have learned or evolved to avoid eating poisonous mushrooms.[34] However, it is believed that mammals pose a higher threat to mushrooms than fungivores, as larger body sizes mean they are more capable of eating an entire fungus in one sitting.[33]


Some phenotypes, or observable characteristics, may co-occur with toxicity, and therefore act as a warning signal. The first potential warning sign is aposematism, which is an adaptation that warns off predators based on a physical trait of an organism. In this case, the researchers were interested in observing whether the color of a mushroom deters predators. This would suggest that toxic mushrooms are of different colors than non-poisonous ones. The visual cue of some colors should be enough for predators to know not to consume the mushroom. The second possible warning sign is olfactory aposematism, a similar concept, but instead of focusing on color, the odor of the mushroom would be what deters predation. This would again indicate that poisonous mushrooms would emit a different odor than non-poisonous ones. Alternatively, is the ability of organisms to learn from other organisms.[33] This would suggest that avoidance of toxic mushrooms is a learned behavior. Organisms may avoid toxic mushrooms if they observed other organisms of the same species consume the fungus. Learned behavior is when an organism learns how to behave based on previous experiences. Some researchers believe that if an organism got sick or observed another organism get sick from consuming a poisonous mushroom, then they would know not to continue consuming it for fear of getting sick again.


An analysis of 245 North American mushroom species and 265 from Europe, revealed 21.2% of the North American species and 12.1% of the European ones as poisonous. After collecting this information, and using a neural network to classify all of the mushrooms based on color and odor, the researchers concluded that there was no correlation between cap color and mushrooms containing toxins.[33] The cap is the top, rounded part of a mushroom and comes in different colors. This proposes that the cap color does not act as a warning sign to deter predators, providing no evidence that poisonous mushrooms may not signal their toxicity through visual or chemical traits.[33] The three deadly mushrooms listed above, Amanita, Galerina, and Lepiota, are all of different colors, consisting of reds, yellows, browns, and whites. A possible theory as to why color is not a factor in determining whether a mushroom is poisonous is the fact that many of its predators are nocturnal and have poor vision. Therefore, viewing the different colors is difficult, and could result in inaccurate consumption.[33] The study, however, did suggest that poisonous mushrooms do emit a smell that is unpleasant and therefore discourages consumption. Despite this result, there is no definitive evidence to suggest if the odor is a result of the production of the toxin or if it is intended as a warning signal.[33] Additionally, many of the odors are not picked up by humans. This could suggest that there is another characteristic difference between poisonous and non-poisonous mushrooms to avoid predation from larger mammals or that there is another purpose for some mushrooms being poisonous that is not dependent on predators.

Prognosis and treatment[edit]

Some mushrooms contain less toxic compounds and, therefore, are not severely poisonous. Poisonings by these mushrooms may respond well to treatment. However, certain types of mushrooms contain very potent toxins and are very poisonous; so even if symptoms are treated promptly, mortality is high. With some toxins, death can occur in a week or a few days. Although a liver or kidney transplant may save some patients with complete organ failure, in many cases there are no organs available. Patients hospitalized and given aggressive support therapy almost immediately after ingestion of amanitin-containing mushrooms have a mortality rate of only 10%, whereas those admitted 60 or more hours after ingestion have a 50–90% mortality rate.[35] In the United States, mushroom poisoning kills an average of about 3 people a year.[36] According to National Poison Data System (NPDS) annual reports published by America's Poison Centers, the average number of deaths occurring over a ten-year period (2012–2020) sits right at 3 a year.[37] In 2012, 4 out of the 7 total deaths that occurred that year, were attributed to a single event where a "housekeeper at a Board and Care Home for elderly dementia patients collected and cooked wild (Amanita) mushrooms into a sauce that she consumed with six residents of the home.".[38][39] Over 1,300 emergency room visits in the United States were attributed to poisonous mushroom ingestion in 2016, with about 9% of patients experiencing a serious adverse outcome.[40]

Society and culture[edit]

Folk traditions[edit]

Many folk traditions concern the defining features of poisonous mushrooms.[41][42] However, there are no general identifiers for poisonous mushrooms, so such traditions are unreliable. Guidelines to identify particular mushrooms exist, and will serve only if one knows which mushrooms are toxic.


Examples of erroneous folklore "rules" include:

(for lethal species only)

List of deadly fungi

(including non-deadly species that are nevertheless harmful)

List of poisonous fungi

Poisonous American Mushrooms – AmericanMushrooms.com

from medical mycologist R.C. Summerbell

Poisonous mushrooms: microscopic identification in cooked specimens

from the North American Mycological Association

Mushroom Poisoning Syndromes

(North America) from the North American Mycological Association

Mushroom Poisoning Case Registry

Provides information on the toxicity of mushrooms in your area, symptoms and first aid.

American Association of Poison Control Centers

Maunder, John E; Voitk, Andrus (Summer 2010). (PDF). Fungi. 3 (3): 36–44.

"What We Don't Know About Slugs & Mushrooms"