Katana VentraIP

Axiom

An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.[1][2]

Not to be confused with axion or axon.

The precise definition varies across fields of study. In classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question.[3] In modern logic, an axiom is a premise or starting point for reasoning.[4]


In mathematics, an axiom may be a "logical axiom" or a "non-logical axiom". Logical axioms are taken to be true within the system of logic they define and are often shown in symbolic form (e.g., (A and B) implies A), while non-logical axioms are substantive assertions about the elements of the domain of a specific mathematical theory, for example a + 0 = a in integer arithmetic.


Non-logical axioms may also be called "postulates", "assumptions" or "proper axioms".[5] In most cases, a non-logical axiom is simply a formal logical expression used in deduction to build a mathematical theory, and might or might not be self-evident in nature (e.g., the parallel postulate in Euclidean geometry). To axiomatize a system of knowledge is to show that its claims can be derived from a small, well-understood set of sentences (the axioms), and there are typically many ways to axiomatize a given mathematical domain.


Any axiom is a statement that serves as a starting point from which other statements are logically derived. Whether it is meaningful (and, if so, what it means) for an axiom to be "true" is a subject of debate in the philosophy of mathematics.[6]

Etymology[edit]

The word axiom comes from the Greek word ἀξίωμα (axíōma), a verbal noun from the verb ἀξιόειν (axioein), meaning "to deem worthy", but also "to require", which in turn comes from ἄξιος (áxios), meaning "being in balance", and hence "having (the same) value (as)", "worthy", "proper". Among the ancient Greek philosophers and mathematicians, axioms were taken to be immediately evident propositions, foundational and common to many fields of investigation, and self-evidently true without any further argument or proof.[7]


The root meaning of the word postulate is to "demand"; for instance, Euclid demands that one agree that some things can be done (e.g., any two points can be joined by a straight line).[8]


Ancient geometers maintained some distinction between axioms and postulates. While commenting on Euclid's books, Proclus remarks that "Geminus held that this [4th] Postulate should not be classed as a postulate but as an axiom, since it does not, like the first three Postulates, assert the possibility of some construction but expresses an essential property."[9] Boethius translated 'postulate' as petitio and called the axioms notiones communes but in later manuscripts this usage was not always strictly kept.

Historical development[edit]

Early Greeks[edit]

The logico-deductive method whereby conclusions (new knowledge) follow from premises (old knowledge) through the application of sound arguments (syllogisms, rules of inference) was developed by the ancient Greeks, and has become the core principle of modern mathematics. Tautologies excluded, nothing can be deduced if nothing is assumed. Axioms and postulates are thus the basic assumptions underlying a given body of deductive knowledge. They are accepted without demonstration. All other assertions (theorems, in the case of mathematics) must be proven with the aid of these basic assumptions. However, the interpretation of mathematical knowledge has changed from ancient times to the modern, and consequently the terms axiom and postulate hold a slightly different meaning for the present day mathematician, than they did for Aristotle and Euclid.[7]


The ancient Greeks considered geometry as just one of several sciences, and held the theorems of geometry on par with scientific facts. As such, they developed and used the logico-deductive method as a means of avoiding error, and for structuring and communicating knowledge. Aristotle's posterior analytics is a definitive exposition of the classical view.


An "axiom", in classical terminology, referred to a self-evident assumption common to many branches of science. A good example would be the assertion that:

Axiomatic system

Dogma

axiom in science and philosophy

First principle

List of axioms

Model theory

Regulæ Juris

Theorem

Presupposition

Principle

Mendelson, Elliot (1987). Introduction to mathematical logic. Belmont, California: Wadsworth & Brooks.  0-534-06624-0

ISBN

(1889), On an Evolutionist Theory of Axioms: inaugural lecture delivered October 15, 1889 (1st ed.), Oxford, Wikidata Q26720682{{citation}}: CS1 maint: location missing publisher (link)

John Cook Wilson

at PhilPapers

Axiom

at PlanetMath.

Axiom

Metamath axioms page