Katana VentraIP

Potential energy

In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.[1][2] The term potential energy was introduced by the 19th-century Scottish engineer and physicist William Rankine,[3][4][5] although it has links to the ancient Greek philosopher Aristotle's concept of potentiality.

For the Flash episode, see Potential Energy (The Flash).

Potential energy

PE, U, or V

U = mgh (gravitational)

U = 12kx2 (elastic)
U = 12CV2 (electric)
U = −mB (magnetic)

U =

Common types of potential energy include the gravitational potential energy of an object, the elastic potential energy of an extended spring, and the electric potential energy of an electric charge in an electric field. The unit for energy in the International System of Units (SI) is the joule (symbol J).


Potential energy is associated with forces that act on a body in a way that the total work done by these forces on the body depends only on the initial and final positions of the body in space. These forces, whose total work is path independent, are called conservative forces. If the force acting on a body varies over space, then one has a force field; such a field is described by vectors at every point in space, which is in-turn called a vector field. A conservative vector field can be simply expressed as the gradient of a certain scalar function, called a scalar potential. The potential energy is related to, and can be obtained from, this potential function.

Reference level

The potential energy is a function of the state a system is in, and is defined relative to that for a particular state. This reference state is not always a real state; it may also be a limit, such as with the distances between all bodies tending to infinity, provided that the energy involved in tending to that limit is finite, such as in the case of inverse-square law forces. Any arbitrary reference state could be used; therefore it can be chosen based on convenience.


Typically the potential energy of a system depends on the relative positions of its components only, so the reference state can also be expressed in terms of relative positions.

Nuclear potential energy

Nuclear potential energy is the potential energy of the particles inside an atomic nucleus. The nuclear particles are bound together by the strong nuclear force. Weak nuclear forces provide the potential energy for certain kinds of radioactive decay, such as beta decay.


Nuclear particles like protons and neutrons are not destroyed in fission and fusion processes, but collections of them can have less mass than if they were individually free, in which case this mass difference can be liberated as heat and radiation in nuclear reactions (the heat and radiation have the missing mass, but it often escapes from the system, where it is not measured). The energy from the Sun is an example of this form of energy conversion. In the Sun, the process of hydrogen fusion converts about 4 million tonnes of solar matter per second into electromagnetic energy, which is radiated into space.

Serway, Raymond A.; Jewett, John W. (2010). Physics for Scientists and Engineers (8th ed.). Brooks/Cole cengage.  978-1-4390-4844-3.

ISBN

Tipler, Paul (2004). Physics for Scientists and Engineers: Mechanics, Oscillations and Waves, Thermodynamics (5th ed.). W. H. Freeman.  0-7167-0809-4.

ISBN

What is potential energy?