Quantity
Quantity or amount is a property that can exist as a multitude or magnitude, which illustrate discontinuity and continuity. Quantities can be compared in terms of "more", "less", or "equal", or by assigning a numerical value multiple of a unit of measurement. Mass, time, distance, heat, and angle are among the familiar examples of quantitative properties.
For the term in phonetics, see length (phonetics).
Quantity is among the basic classes of things along with quality, substance, change, and relation. Some quantities are such by their inner nature (as number), while others function as states (properties, dimensions, attributes) of things such as heavy and light, long and short, broad and narrow, small and great, or much and little.
Under the name of multitude comes what is discontinuous and discrete and divisible ultimately into indivisibles, such as: army, fleet, flock, government, company, party, people, mess (military), chorus, crowd, and number; all which are cases of collective nouns. Under the name of magnitude comes what is continuous and unified and divisible only into smaller divisibles, such as: matter, mass, energy, liquid, material—all cases of non-collective nouns.
Along with analyzing its nature and classification, the issues of quantity involve such closely related topics as dimensionality, equality, proportion, the measurements of quantities, the units of measurements, number and numbering systems, the types of numbers and their relations to each other as numerical ratios.
Structure
Continuous quantities possess a particular structure that was first explicitly characterized by Hölder (1901) as a set of axioms that define such features as identities and relations between magnitudes. In science, quantitative structure is the subject of empirical investigation and cannot be assumed to exist a priori for any given property. The linear continuum represents the prototype of continuous quantitative structure as characterized by Hölder (1901) (translated in Michell & Ernst, 1996). A fundamental feature of any type of quantity is that the relationships of equality or inequality can in principle be stated in comparisons between particular magnitudes, unlike quality, which is marked by likeness, similarity and difference, diversity. Another fundamental feature is additivity. Additivity may involve concatenation, such as adding two lengths A and B to obtain a third A + B. Additivity is not, however, restricted to extensive quantities but may also entail relations between magnitudes that can be established through experiments that permit tests of hypothesized observable manifestations of the additive relations of magnitudes. Another feature is continuity, on which Michell (1999, p. 51) says of length, as a type of quantitative attribute, "what continuity means is that if any arbitrary length, a, is selected as a unit, then for every positive real number, r, there is a length b such that b = ra". A further generalization is given by the theory of conjoint measurement, independently developed by French economist Gérard Debreu (1960) and by the American mathematical psychologist R. Duncan Luce and statistician John Tukey (1964).
Some further examples of quantities are: