Scientific Revolution
The Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology (including human anatomy) and chemistry transformed the views of society about nature.[1][2][3][4][5][6] The Scientific Revolution took place in Europe in the second half of the Renaissance period, with the 1543 Nicolaus Copernicus publication De revolutionibus orbium coelestium (On the Revolutions of the Heavenly Spheres) often cited as its beginning.[7]
This article is about a period in the history of science. For the process of scientific progress via revolutions, proposed by Thomas Kuhn, see Paradigm shift.Date
The era of the Scientific Renaissance focused to some degree on recovering the knowledge of the ancients and is considered to have culminated in Isaac Newton's 1687 publication Principia which formulated the laws of motion and universal gravitation,[8] thereby completing the synthesis of a new cosmology. The subsequent Age of Enlightenment saw the concept of a scientific revolution emerge in the 18th-century work of Jean Sylvain Bailly, who described a two-stage process of sweeping away the old and establishing the new.[9] There continues to be scholarly engagement regarding the boundaries of the Scientific Revolution and its chronology.
The Scientific Revolution was built upon the foundation of ancient Greek learning and science in the Middle Ages, as it had been elaborated and further developed by Roman/Byzantine science and medieval Islamic science.[6] Some scholars have noted a direct tie between "particular aspects of traditional Christianity" and the rise of science.[24][25] The "Aristotelian tradition" was still an important intellectual framework in the 17th century, although by that time natural philosophers had moved away from much of it.[5] Key scientific ideas dating back to classical antiquity had changed drastically over the years and in many cases had been discredited.[5] The ideas that remained, which were transformed fundamentally during the Scientific Revolution, include:
Ancient precedent existed for alternative theories and developments which prefigured later discoveries in the area of physics and mechanics; but in light of the limited number of works to survive translation in a period when many books were lost to warfare, such developments remained obscure for centuries and are traditionally held to have had little effect on the re-discovery of such phenomena; whereas the invention of the printing press made the wide dissemination of such incremental advances of knowledge commonplace. Meanwhile, however, significant progress in geometry, mathematics, and astronomy was made in medieval times.
It is also true that many of the important figures of the Scientific Revolution shared in the general Renaissance respect for ancient learning and cited ancient pedigrees for their innovations. Copernicus,[31] Galileo,[1][2][3][32] Johannes Kepler[33] and Newton[34] all traced different ancient and medieval ancestries for the heliocentric system. In the Axioms Scholium of his Principia, Newton said its axiomatic three laws of motion were already accepted by mathematicians such as Christiaan Huygens, Wallace, Wren and others. While preparing a revised edition of his Principia, Newton attributed his law of gravity and his first law of motion to a range of historical figures.[34][35]
Despite these qualifications, the standard theory of the history of the Scientific Revolution claims that the 17th century was a period of revolutionary scientific changes. Not only were there revolutionary theoretical and experimental developments, but that even more importantly, the way in which scientists worked was radically changed. For instance, although intimations of the concept of inertia are suggested sporadically in ancient discussion of motion,[36][37] the salient point is that Newton's theory differed from ancient understandings in key ways, such as an external force being a requirement for violent motion in Aristotle's theory.[38]