Katana VentraIP

Streptococcus pyogenes

Streptococcus pyogenes is a species of Gram-positive, aerotolerant bacteria in the genus Streptococcus. These bacteria are extracellular, and made up of non-motile and non-sporing cocci (round cells) that tend to link in chains. They are clinically important for humans, as they are an infrequent, but usually pathogenic, part of the skin microbiota that can cause Group A streptococcal infection. S. pyogenes is the predominant species harboring the Lancefield group A antigen, and is often called group A Streptococcus (GAS). However, both Streptococcus dysgalactiae and the Streptococcus anginosus group can possess group A antigen as well. Group A streptococci, when grown on blood agar, typically produce small (2–3 mm) zones of beta-hemolysis, a complete destruction of red blood cells. The name group A (beta-hemolytic) Streptococcus is thus also used.[1]

The species name is derived from Greek words meaning 'a chain' (streptos) of berries (coccus [Latinized from kokkos]) and pus (pyo)-forming (genes), since a number of infections caused by the bacterium produce pus. The main criterion for differentiation between Staphylococcus spp. and Streptococcus spp. is the catalase test. Staphylococci are catalase positive whereas streptococci are catalase-negative.[2] S. pyogenes can be cultured on fresh blood agar plates. The PYR test allows for the differentiation of Streptococcus pyogenes from other morphologically similar beta-hemolytic streptococci (including S. dysgalactiae subsp. esquismilis) as S. pyogenes will produce a positive test result.[3]


An estimated 700 million GAS infections occur worldwide each year. While the overall mortality rate for these infections is less than 0.1%, over 650,000 of the cases are severe and invasive, and these cases have a mortality rate of 25%.[4] Early recognition and treatment are critical; diagnostic failure can result in sepsis and death.[5][6] S. pyogenes is clinically and historically significant as the cause of scarlet fever, which results from exposure to the species' exotoxin.[7]

Vaccine[edit]

There is a polyvalent inactivated vaccine against several types of Streptococcus including S. pyogenes called " vacuna antipiogena polivalente BIOL" it is recommended an administration in a series of 5 weeks. Two weekly applications are made at intervals of 2 to 4 days. The vaccine is produced by the Instituto Biológico Argentino.[43]


There is another potential vaccine being developed; the vaccine candidate peptide is called StreptInCor.[44]

Applications[edit]

Bionanotechnology[edit]

Many S. pyogenes proteins have unique properties, which have been harnessed in recent years to produce a highly specific "superglue"[45][46] and a route to enhance the effectiveness of antibody therapy.[47]

Genome editing[edit]

The CRISPR system from this organism[48] that is used to recognize and destroy DNA from invading viruses, thus stopping the infection, was appropriated in 2012 for use as a genome-editing tool that could potentially alter any piece of DNA and later RNA.[49]

Friedrich Fehleisen

Friedrich Julius Rosenbach

Friedrich Loeffler

Frederick Twort

Ferretti JJ, Stevens DL, Fischetti VA (2016). . Oklahoma City, OK: University of Oklahoma Health Sciences Center. PMID 26866208.

Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]

Type strain of Streptococcus pyogenes at BacDive - the Bacterial Diversity Metadatabase

. On: SciTechDaily. June 16, 2020. Source: Media Lab, Massachusetts Institute of Technology.

Nature-Inspired CRISPR Enzyme Discoveries Vastly Expand Genome Editing