Katana VentraIP

Structural formula

The structural formula of a chemical compound is a graphic representation of the molecular structure (determined by structural chemistry methods), showing how the atoms are possibly arranged in the real three-dimensional space. The chemical bonding within the molecule is also shown, either explicitly or implicitly. Unlike other chemical formula types,[a] which have a limited number of symbols and are capable of only limited descriptive power, structural formulas provide a more complete geometric representation of the molecular structure. For example, many chemical compounds exist in different isomeric forms, which have different enantiomeric structures but the same molecular formula. There are multiple types of ways to draw these structural formulas such as: Lewis structures, condensed formulas, skeletal formulas, Newman projections, Cyclohexane conformations, Haworth projections, and Fischer projections.[2]

Several systematic chemical naming formats, as in chemical databases, are used that are equivalent to, and as powerful as, geometric structures. These chemical nomenclature systems include SMILES, InChI and CML. These systematic chemical names can be converted to structural formulas and vice versa, but chemists nearly always describe a chemical reaction or synthesis using structural formulas rather than chemical names, because the structural formulas allow the chemist to visualize the molecules and the structural changes that occur in them during chemical reactions. ChemSketch and ChemDraw are popular downloads/websites that allow users to draw reactions and structural formulas, typically in the Lewis Structure style.

Structures in structural formulas[edit]

Bonds[edit]

Bonds are often shown as a line that connects one atom to another. One line indicates a single bond. Two lines indicate a double bond, and three lines indicate a triple bond. In some structures the atoms in between each bond are specified and shown. However, in some structures, the carbon molecules are not written out specifically. Instead, these carbons are indicated by a corner that forms when two lines connect. Additionally, Hydrogen atoms are implied and not usually drawn out. These can be inferred based on how many other atoms the carbon is attached to. For example, if Carbon A is attached to one other Carbon B, Carbon A will have three hydrogens in order to fill its octet.[3]

Lewis structures (or "Lewis dot structures") are flat graphical formulas that show atom connectivity and lone pair or unpaired electrons, but not three-dimensional structure. This notation is mostly used for small molecules. Each line represents the two electrons of a single bond. Two or three parallel lines between pairs of atoms represent double or triple bonds, respectively. Alternatively, pairs of dots may be used to represent bonding pairs. In addition, all non-bonded electrons (paired or unpaired) and any formal charges on atoms are indicated. Through the use of Lewis structures, the placement of electrons, whether it is in a bond or in lone pairs, will allow for the identification of the formal charges of the atoms in the molecule to understand the stability and determine the most likely molecule (based on molecular geometry difference) that would be formed in a reaction. Lewis structures do give some thought to the geometry of the molecule as oftentimes, the bonds are drawn at certain angles to represent the molecule in real life. Lewis structure is best used to calculate formal charges or how atoms bond to each other as both electrons and bonds are shown. Lewis structures give an idea of the molecular and electronic geometry which varies based on the presence of bonds and lone pairs and through this one could determine the bond angles and hybridization as well.

Skeletal formula of isobutanol, (CH3)2CHCH2OH

Skeletal formula of isobutanol, (CH3)2CHCH2OH

Skeletal formulas are the standard notation for more complex organic molecules. In this type of diagram, first used by the organic chemist Friedrich August Kekulé von Stradonitz,[6] the carbon atoms are implied to be located at the vertices (corners) and ends of line segments rather than being indicated with the atomic symbol C. Hydrogen atoms attached to carbon atoms are not indicated: each carbon atom is understood to be associated with enough hydrogen atoms to give the carbon atom four bonds. The presence of a positive or negative charge at a carbon atom takes the place of one of the implied hydrogen atoms. Hydrogen atoms attached to atoms other than carbon must be written explicitly. An additional feature of skeletal formulas is that by adding certain structures the stereochemistry, that is the three-dimensional structure, of the compound can be determined. Often times, the skeletal formula can indicate stereochemistry through the use of wedges instead of lines. Solid wedges represent bonds pointing above the plane of the paper, whereas dashed wedges represent bonds pointing below the plane.

Perspective drawings[edit]

Newman projection and sawhorse projection[edit]

The Newman projection and the sawhorse projection are used to depict specific conformers or to distinguish vicinal stereochemistry. In both cases, two specific carbon atoms and their connecting bond are the center of attention. The only difference is a slightly different perspective: the Newman projection looking straight down the bond of interest, the sawhorse projection looking at the same bond but from a somewhat oblique vantage point. In the Newman projection, a circle is used to represent a plane perpendicular to the bond, distinguishing the substituents on the front carbon from the substituents on the back carbon. In the sawhorse projection, the front carbon is usually on the left and is always slightly lower. Sometimes, an arrow is used to indicate the front carbon. The sawhorse projection is very similar to a skeletal formula, and it can even use wedges instead of lines to indicate the stereochemistry of the molecule. The sawhorse projection is set apart from the skeletal formulas because the sawhorse projection is not a very good indicator of molecule geometry and molecular arrangement. Both a Newman and Sawhorse Projection can be used to create a Fischer Projection.

Limitations[edit]

A structural formula is a simplified model that cannot represent certain aspects of chemical structures. For example, formalized bonding may not be applicable to dynamic systems such as delocalized bonds. Aromaticity is such a case and relies on convention to represent the bonding. Different styles of structural formulas may represent aromaticity in different ways, leading to different depictions of the same chemical compound. Another example is formal double bonds where the electron density is spread outside the formal bond, leading to partial double bond character and slow inter-conversion at room temperature. For all dynamic effects, temperature will affect the inter-conversion rates and may change how the structure should be represented. There is no explicit temperature associated with a structural formula, although many assume that it would be standard temperature.

Molecular graph

Chemical formula

Valency interaction formula

Side chain

Chemical structure

The Importance of Structural Formulas

. 2016-05-09. Archived from the original on 2016-05-09. Retrieved 2022-12-17.

"Structural Formulas"

How to get structural formulas using crystallography