Surgery theory
In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by John Milnor (1961). Milnor called this technique surgery, while Andrew Wallace called it spherical modification.[1] The "surgery" on a differentiable manifold M of dimension , could be described as removing an imbedded sphere of dimension p from M.[2] Originally developed for differentiable (or, smooth) manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds.
Surgery refers to cutting out parts of the manifold and replacing it with a part of another manifold, matching up along the cut or boundary. This is closely related to, but not identical with, handlebody decompositions.
More technically, the idea is to start with a well-understood manifold M and perform surgery on it to produce a manifold M′ having some desired property, in such a way that the effects on the homology, homotopy groups, or other invariants of the manifold are known. A relatively easy argument using Morse theory shows that a manifold can be obtained from another one by a sequence of spherical modifications if and only if those two belong to the same cobordism class.[1]
The classification of exotic spheres by Michel Kervaire and Milnor (1963) led to the emergence of surgery theory as a major tool in high-dimensional topology.