Katana VentraIP

Sustainable agriculture

Sustainable agriculture is farming in sustainable ways meeting society's present food and textile needs, without compromising the ability for current or future generations to meet their needs.[1] It can be based on an understanding of ecosystem services. There are many methods to increase the sustainability of agriculture. When developing agriculture within sustainable food systems, it is important to develop flexible business processes and farming practices.[2] Agriculture has an enormous environmental footprint, playing a significant role in causing climate change (food systems are responsible for one third of the anthropogenic greenhouse gas emissions),[3][4] water scarcity, water pollution, land degradation, deforestation and other processes;[5] it is simultaneously causing environmental changes and being impacted by these changes.[6] Sustainable agriculture consists of environment friendly methods of farming that allow the production of crops or livestock without causing damage to human or natural systems. It involves preventing adverse effects on soil, water, biodiversity, and surrounding or downstream resources, as well as to those working or living on the farm or in neighboring areas. Elements of sustainable agriculture can include permaculture, agroforestry, mixed farming, multiple cropping, and crop rotation.[7]

Developing sustainable food systems contributes to the sustainability of the human population. For example, one of the best ways to mitigate climate change is to create sustainable food systems based on sustainable agriculture. Sustainable agriculture provides a potential solution to enable agricultural systems to feed a growing population within the changing environmental conditions.[6] Besides sustainable farming practices, dietary shifts to sustainable diets are an intertwined way to substantially reduce environmental impacts.[8][9][10][11] Numerous sustainability standards and certification systems exist, including organic certification, Rainforest Alliance, Fair Trade, UTZ Certified, GlobalGAP, Bird Friendly, and the Common Code for the Coffee Community (4C).[12]

satisfy human food and fiber needs

enhance environmental quality and the natural resource base upon which the agriculture economy depends

make the most efficient use of nonrenewable resources and on-farm resources and integrate, where appropriate, natural biological cycles and controls

sustain the economic viability of farm operations

enhance the quality of life for farmers and society as a whole.

The term "sustainable agriculture" was defined in 1977 by the USDA as an integrated system of plant and animal production practices having a site-specific application that will, over the long term:[13]


Yet the idea of having a sustainable relationship with the land has been prevalent in indigenous communities for centuries before the term was formally added to the lexicon.[14]

Social factors[edit]

Rural economic development[edit]

Sustainable agriculture attempts to solve multiple problems with one broad solution. The goal of sustainable agricultural practices is to decrease environmental degradation due to farming while increasing crop–and thus food–output. There are many varying strategies attempting to use sustainable farming practices in order to increase rural economic development within small-scale farming communities. Two of the most popular and opposing strategies within the modern discourse are allowing unrestricted markets to determine food production and deeming food a human right. Neither of these approaches have been proven to work without fail. A promising proposal to rural poverty reduction within agricultural communities is sustainable economic growth; the most important aspect of this policy is to regularly include the poorest farmers in the economy-wide development through the stabilization of small-scale agricultural economies.[76]


In 2007, the United Nations reported on "Organic Agriculture and Food Security in Africa", stating that using sustainable agriculture could be a tool in reaching global food security without expanding land usage and reducing environmental impacts.[77] There has been evidence provided by developing nations from the early 2000s stating that when people in their communities are not factored into the agricultural process that serious harm is done. The social scientist Charles Kellogg has stated that, "In a final effort, exploited people pass their suffering to the land."[77] Sustainable agriculture mean the ability to permanently and continuously "feed its constituent populations".[77]


There are a lot of opportunities that can increase farmers' profits, improve communities, and continue sustainable practices. For example, in Uganda, Genetically Modified Organisms were originally illegal. However, with the stress of banana crisis in Uganda, where Banana Bacterial Wilt had the potential to wipe out 90% of yield, they decided to explore GMOs as a possible solution.[78] The government issued the National Biotechnology and Biosafety bill, which will allow scientists that are part of the National Banana Research Program to start experimenting with genetically modified organisms.[79] This effort has the potential to help local communities because a significant portion live off the food they grow themselves, and it will be profitable because the yield of their main produce will remain stable.


Not all regions are suitable for agriculture.[80][81] The technological advancement of the past few decades has allowed agriculture to develop in some of these regions. For example, Nepal has built greenhouses to deal with its high altitude and mountainous regions.[31] Greenhouses allow for greater crop production and also use less water since they are closed systems.[82]


Desalination techniques can turn salt water into fresh water which allows greater access to water for areas with a limited supply.[83] This allows the irrigation of crops without decreasing natural fresh water sources.[84] While desalination can be a tool to provide water to areas that need it to sustain agriculture, it requires money and resources. Regions of China have been considering large scale desalination in order to increase access to water, but the current cost of the desalination process makes it impractical.[85]

Economic factors[edit]

Costs, such as environmental problems, not covered in traditional accounting systems (which take into account only the direct costs of production incurred by the farmer) are known as externalities.[17]


Netting studied sustainability and intensive agriculture in smallholder systems through history.[88]


There are several studies incorporating externalities such as ecosystem services, biodiversity, land degradation, and sustainable land management in economic analysis. These include The Economics of Ecosystems and Biodiversity study and the Economics of Land Degradation Initiative which seek to establish an economic cost-benefit analysis on the practice of sustainable land management and sustainable agriculture.


Triple bottom line frameworks include social and environmental alongside a financial bottom line. A sustainable future can be feasible if growth in material consumption and population is slowed down and if there is a drastic increase in the efficiency of material and energy use. To make that transition, long- and short-term goals will need to be balanced enhancing equity and quality of life.[89]

Challenges and debates[edit]

Barriers[edit]

The barriers to sustainable agriculture can be broken down and understood through three different dimensions. These three dimensions are seen as the core pillars to sustainability: social, environmental, and economic pillars.[90] The social pillar addresses issues related to the conditions in which societies are born into, growing in, and learning from.[90] It deals with shifting away from traditional practices of agricultural and moving into new sustainable practices that will create better societies and conditions.[90] The environmental pillar addresses climate change and focuses on agricultural practices that protect the environment for future generations.[90] The economic pillar discovers ways in which sustainable agriculture can be practiced while fostering economic growth and stability, with minimal disruptions to livelihoods.[90] All three pillars must be addressed to determine and overcome the barriers preventing sustainable agricultural practices.[90]


Social barriers to sustainable agriculture include cultural shifts, the need for collaboration, incentives, and new legislation.[90] The move from conventional to sustainable agriculture will require significant behavioural changes from both farmers and consumers.[91] Cooperation and collaboration between farmers is necessary to successfully transition to sustainable practices with minimal complications.[91] This can be seen as a challenge for farmers who care about competition and profitability.[92] There must also be an incentive for farmers to change their methods of agriculture.[93] The use of public policy, advertisements, and laws that make sustainable agriculture mandatory or desirable can be utilized to overcome these social barriers.[94]

Ecological farming involves the introduction of symbiotic species, where possible, to support the ecological sustainability of the farm. Associated benefits include a reduction in and elimination of dead zones.[142]

ecological debt

Ecological farming is a pioneering, practical development which aims to create globally systems, and encourages review of the importance of maintaining biodiversity in food production and farming end products.[143]

sustainable land management

One foreseeable option is to develop specialized automata to scan and respond to soil and plant situations relative to intensive care for the soil and the plants. Accordingly, conversion to ecological farming may best utilize the information age, and become recognised as a primary user of robotics and expert systems.

[144]

Making 25% of EU agriculture organic, by 2030.

Reduce by 50% the use of by 2030.

pesticides

Reduce the use of by 20% by 2030.

fertilizers

Reduce by at least 50%.

nutrient loss

Reduce the use of and antimicrobials in aquaculture by 50% by 2030.

antimicrobials in agriculture

Create sustainable food labeling.

Reduce by 50% by 2030.

food waste

Dedicate to R&I related to the issue €10 billion.

[186]

History[edit]

In 1907, the American author Franklin H. King discussed in his book Farmers of Forty Centuries the advantages of sustainable agriculture and warned that such practices would be vital to farming in the future.[198] The phrase 'sustainable agriculture' was reportedly coined by the Australian agronomist Gordon McClymont.[199] The term became popular in the late 1980s.[158] There was an international symposium on sustainability in horticulture by the International Society of Horticultural Science at the International Horticultural Congress in Toronto in 2002.[200] At the following conference at Seoul in 2006, the principles were discussed further.[201]


This potential future inability to feed the world's population has been a concern since the English political economist Thomas Malthus in the early 1800s, but has become increasingly important recently.[202] Starting at the very end of the twentieth and early twenty-first centuries, this issue became widely discussed in the U.S. because of growing anxieties of a rapidly increasing global population. Agriculture has long been the biggest industry worldwide and requires significant land, water, and labor inputs. At the turn of the twenty-first century, experts questioned the industry's ability to keep up with population growth.[16] This debate led to concerns over global food insecurity and "solving hunger".[203]

Agroecology

Climate-smart agriculture

Environmental impact of meat production

Forest farming

Local food

Natural farming

(between the UK and China)

Sustainable Agriculture Innovation Network

Sustainable Commodity Initiative

Sustainable development

Sustainable energy

Sustainable food system

Sustainable landscaping

Agri-environmental measures