Katana VentraIP

Swell (ocean)

A swell, also sometimes referred to as ground swell, in the context of an ocean, sea or lake, is a series of mechanical waves that propagate along the interface between water and air under the predominating influence of gravity, and thus are often referred to as surface gravity waves. These surface gravity waves have their origin as wind waves, but are the consequence of dispersion of wind waves from distant weather systems, where wind blows for a duration of time over a fetch of water, and these waves move out from the source area at speeds that are a function of wave period and length. More generally, a swell consists of wind-generated waves that are not greatly affected by the local wind at that time. Swell waves often have a relatively long wavelength, as short wavelength waves carry less energy and dissipate faster, but this varies due to the size, strength, and duration of the weather system responsible for the swell and the size of the water body, and varies from event to event, and from the same event, over time. Occasionally, swells that are longer than 700m occur as a result of the most severe storms.

"Ocean swell" redirects here. For the thoroughbred racehorse, see Ocean Swell.

Swell direction is the direction from which the swell is moving. It is given as a geographical direction, either in degrees, or in points of the compass, such as NNW or SW swell, and like winds, the direction given is generally the direction the swell is coming from. Swells have a narrower range of frequencies and directions than locally generated wind waves, because they have dispersed from their generation area and over time tend to sort by speed of propagation with the faster waves passing a distant point first. Swells take on a more defined shape and direction and are less random than locally generated wind waves.

– the wind must be moving faster than the wave crest (in the direction in which the wave crest travels) for net energy transfer from air to water; stronger prolonged winds create larger waves

Wind speed

The uninterrupted distance of open water over which the wind blows without significant change in direction (called the )

fetch

Width of water surface in the fetch

Wind duration – the time over which the wind has blown over the fetch

Water depth

Development[edit]

Long swell waves develop from and take energy from the shorter wind waves. The process was first described by Klaus Hasselmann (2021 Nobel prize winner) after investigating the non-linear effects that are most pronounced near the peaks of the highest waves. He showed that, through these non-linearities, two wave trains in deep water can interact to generate two new sets of waves, one generally of longer and the other of shorter wavelength.


The equation that Hasselmann[8] developed to describe this process is now used in the sea state models (for example Wavewatch III[9]) used by all the major weather and climate forecasting centres. This is because both the wind sea and the swell have significant effects on the transfer of heat from the ocean to atmosphere. This affects both large scale climate systems, like the El Niño, and smaller scale systems, such as the atmospheric depressions that develop near the edges of the Gulf Stream.


A good physical description of the Hasselmann process is hard to explain, but the non-linear effects are largest near the peaks of the highest waves and the short waves, which often break near the same position, can be used as an analogy. This is because each small breaking wave gives a small push to the longer wave on which it is breaking. From the point of view of the long wave, it is receiving a small push on each of its crests just like a swing being given a small push at just the right time. There is also no comparable effect in the wave's trough - a term which would tend to reduce the size of the long wave.


From the point of view of a physicist this effect is of extra interest because it shows how, what starts as a random wave field, can generate the order of a long train of swell waves at the cost of the energy losses and increased disorder affecting all the small breaking waves. The sorting of sand grain sizes, often seen on a beach,[10][11] is a similar process (as is a lot of life).

Dissipation[edit]

The dissipation of swell energy is much stronger for short waves, which is why swells from distant storms are only long waves. The dissipation of waves with periods larger than 13 seconds is very weak but still significant at the scale of the Pacific Ocean.[12] These long swells lose half of their energy over a distance that varies from over 20,000 km (half the distance round the globe) to just over 2,000 km. This variation was found to be a systematic function of the swell steepness: the ratio of the swell height to the wavelength. The reason for this behavior is still unclear, but it is possible that this dissipation is due to the friction at the air-sea interface.

Coastal impacts[edit]

Just like for all water waves, the energy flux is proportional to the significant wave height squared times the group velocity. In deep water, this group velocity is proportional to the wave period. Hence swells with longer periods can transfer more energy than shorter wind waves. Also, the amplitude of infragravity waves increases dramatically with the wave period (approximately the square of the period), which results in higher run-up.


As swell waves typically have long wavelengths (and thus a deeper wave base), they begin the refraction process (see water waves) at greater distances offshore (in deeper water) than locally generated waves.[14]


Since swell-generated waves are mixed with normal sea waves, they can be difficult to detect with the naked eye (particularly away from the shore) if they are not significantly larger than the normal waves. From a signal analysis point of view, swells can be thought of as a fairly regular (though not continual) wave signal existing in the midst of strong noise (i.e., normal waves and chop).

Surfing

. Surfline.

"Global swell/surf forecasts"

. Coastalwatch.

"Australian swell forecasts)"

. Magicseaweed.

"UK swell forecasting"

. Seabreeze.

"Australian swell forecasts"

. Swellnet.

"Australian swell forecasts"

. Stormsurf.

"Wave Basics (How swells are formed and measured)"

. Waverider Buoys. Archived from the original on 2006-12-10.

"Australian Swell Measuring Devices"