Katana VentraIP

Szpiro's conjecture

In number theory, Szpiro's conjecture relates to the conductor and the discriminant of an elliptic curve. In a slightly modified form, it is equivalent to the well-known abc conjecture. It is named for Lucien Szpiro, who formulated it in the 1980s. Szpiro's conjecture and its equivalent forms have been described as "the most important unsolved problem in Diophantine analysis" by Dorian Goldfeld,[1] in part to its large number of consequences in number theory including Roth's theorem, the Mordell conjecture, the Fermat–Catalan conjecture, and Brocard's problem.[2][3][4][5]

Arakelov theory

Szpiro, L. (1981). "Propriétés numériques du faisceau dualisant rélatif". (PDF). Astérisque. Vol. 86. pp. 44–78. Zbl 0517.14006.

Seminaire sur les pinceaux des courbes de genre au moins deux

Szpiro, L. (1987), "Présentation de la théorie d'Arakelov", Contemp. Math., Contemporary Mathematics, 67: 279–293, :10.1090/conm/067/902599, ISBN 9780821850749, Zbl 0634.14012

doi