Katana VentraIP

Theory of mind

In psychology, theory of mind refers to the capacity to understand other people by ascribing mental states to them. A theory of mind includes the knowledge that others' beliefs, desires, intentions, emotions, and thoughts may be different from one's own.[1] Possessing a functional theory of mind is crucial for success in everyday human social interactions. People utilize a theory of mind when analyzing, judging, and inferring others' behaviors. The discovery and development of theory of mind primarily came from studies done with animals and infants.[2] Factors including drug and alcohol consumption, language development, cognitive delays, age, and culture can affect a person's capacity to display theory of mind. Having a theory of mind is similar to but not identical with having the capacity for empathy[3] or sympathy.

Not to be confused with Philosophy of mind.

It has been proposed that deficits in theory of mind can occur in people with autism,[5] anorexia nervosa,[6] schizophrenia, dysphoria, cocaine addiction,[7] and brain damage caused by alcohol's neurotoxicity.[8][9] There is no current consensus on a theory of mind deficit in people with attention deficit hyperactivity disorder (ADHD). Several studies have been carried out and most of them even show the opposite (5/6). It would appear that people with ADHD do not have a theory of mind deficit like autistic people, but that they share other problems with empathy and emotional processing.[10] Neuroimaging shows that the medial prefrontal cortex (mPFC), the posterior superior temporal sulcus (pSTS), the precuneus, and the amygdala are associated with theory of mind tasks. Patients with frontal lobe or temporoparietal junction lesions find some theory of mind tasks difficult. One's theory of mind develops in childhood as the prefrontal cortex develops. It has been argued that children in a culture of collectivism develop knowledge access earlier and understand diverse beliefs later than Western children in a culture of individualism.[11]

Definition[edit]

The "theory of mind" is described as a theory, because the behavior of the other person, such as their statements and expressions, is the only thing being directly observed; no one has direct access to the mind of another, and the existence and nature of the mind must be inferred.[12] It is typically assumed others have minds analogous to one's own; this assumption is based on three reciprocal social interactions, as observed in joint attention,[2] the functional use of language,[13] and the understanding of others' emotions and actions.[14] Theory of mind allows one to attribute thoughts, desires, and intentions to others, to predict or explain their actions, and to posit their intentions. It enables one to understand that mental states can be the cause of—and can be used to explain and predict—the behavior of others.[12] Being able to attribute mental states to others and understanding them as causes of behavior implies, in part, one must be able to conceive of the mind as a "generator of representations".[15] If a person does not have a mature theory of mind, it may be a sign of cognitive or developmental impairment.[16]


Theory of mind appears to be an innate potential ability in humans that requires social and other experience over many years for its full development. Different people may develop more or less effective theories of mind. Neo-Piagetian theories of cognitive development maintain that theory of mind is a byproduct of a broader hypercognitive ability of the human mind to register, monitor, and represent its own functioning.[17]


Empathy—the recognition and understanding of the states of mind of others, including their beliefs, desires, and particularly emotions—is a related concept. Empathy is often characterized as the ability to "put oneself into another's shoes". Recent neuro-ethological studies of animal behavior suggest that rodents may exhibit empathetic abilities.[18] While empathy is known as emotional perspective-taking, theory of mind is defined as cognitive perspective-taking.[19]


Research on theory of mind, in humans and animals, adults and children, normally and atypically developing, has grown rapidly in the years since Premack and Guy Woodruff's 1978 paper, "Does the chimpanzee have a theory of mind?".[12] The field of social neuroscience has also begun to address this debate by imaging the brains of humans while they perform tasks that require the understanding of an intention, belief, or other mental state in others.


An alternative account of theory of mind is given in operant psychology and provides empirical evidence for a functional account of both perspective-taking and empathy. The most developed operant approach is founded on research on derived relational responding and is subsumed within relational frame theory. Derived relational responding relies on the ability to identify derived relations, or relationships between stimuli that are not directly learned or reinforced; for example, if "snake" is related to "danger" and "danger" is related to "fear", people may know to fear snakes even without learning an explicit connection between snakes and fear.[20] According to this view, empathy and perspective-taking comprise a complex set of derived relational abilities based on learning to discriminate and respond verbally to ever more complex relations between self, others, place, and time, and through established relations.[21][22][23]

Brain mechanisms[edit]

In neurotypical people[edit]

Research on theory of mind in autism led to the view that mentalizing abilities are subserved by dedicated mechanisms that can—in some cases—be impaired while general cognitive function remains largely intact.


Neuroimaging research supports this view, demonstrating specific brain regions are consistently engaged during theory of mind tasks. Positron emission tomography (PET) research on theory of mind, using verbal and pictorial story comprehension tasks, identifies a set of brain regions including the medial prefrontal cortex (mPFC), and area around posterior superior temporal sulcus (pSTS), and sometimes precuneus and amygdala/temporopolar cortex.[116][117] Research on the neural basis of theory of mind has diversified, with separate lines of research focusing on the understanding of beliefs, intentions, and more complex properties of minds such as psychological traits.


Studies from Rebecca Saxe's lab at MIT, using a false-belief versus false-photograph task contrast aimed at isolating the mentalizing component of the false-belief task, have consistently found activation in the mPFC, precuneus, and temporoparietal junction (TPJ), right-lateralized.[118][119] In particular, Saxe et al. proposed that the right TPJ (rTPJ) is selectively involved in representing the beliefs of others.[120] Some debate exists, as the same rTPJ region is consistently activated during spatial reorienting of visual attention;[121][122] Jean Decety from the University of Chicago and Jason Mitchell from Harvard thus propose that the rTPJ subserves a more general function involved in both false-belief understanding and attentional reorienting, rather than a mechanism specialized for social cognition. However, it is possible that the observation of overlapping regions for representing beliefs and attentional reorienting may simply be due to adjacent, but distinct, neuronal populations that code for each. The resolution of typical fMRI studies may not be good enough to show that distinct/adjacent neuronal populations code for each of these processes. In a study following Decety and Mitchell, Saxe and colleagues used higher-resolution fMRI and showed that the peak of activation for attentional reorienting is approximately 6–10 mm above the peak for representing beliefs. Further corroborating that differing populations of neurons may code for each process, they found no similarity in the patterning of fMRI response across space.[123]


Using single-cell recordings in the human dorsomedial prefrontal cortex (dmPFC), researchers at MGH identified neurons that encode information about others' beliefs, which were distinct from self-beliefs, across different scenarios in a false-belief task. They further showed that these neurons could provide detailed information about others' beliefs, and could accurately predict these beliefs' verity.[124] These findings suggest a prominent role of distinct neuronal populations in the dmPFC in theory of mind complemented by the TPJ and pSTS.


Functional imaging also illuminates the detection of mental state information in animations of moving geometric shapes similar to those used in Heider and Simmel (1944),[125] which typical humans automatically perceive as social interactions laden with intention and emotion. Three studies found remarkably similar patterns of activation during the perception of such animations versus a random or deterministic motion control: mPFC, pSTS, fusiform face area (FFA), and amygdala were selectively engaged during the theory of mind condition.[126] Another study presented subjects with an animation of two dots moving with a parameterized degree of intentionality (quantifying the extent to which the dots chased each other), and found that pSTS activation correlated with this parameter.[127]


A separate body of research implicates the posterior superior temporal sulcus in the perception of intentionality in human action. This area is also involved in perceiving biological motion, including body, eye, mouth, and point-light display motion.[128] One study found increased pSTS activation while watching a human lift his hand versus having his hand pushed up by a piston (intentional versus unintentional action).[129] Several studies found increased pSTS activation when subjects perceive a human action that is incongruent with the action expected from the actor's context and inferred intention. Examples would be: a human performing a reach-to-grasp motion on empty space next to an object, versus grasping the object;[130] a human shifting eye gaze toward empty space next to a checkerboard target versus shifting gaze toward the target;[131] an unladen human turning on a light with his knee, versus turning on a light with his knee while carrying a pile of books;[132] and a walking human pausing as he passes behind a bookshelf, versus walking at a constant speed.[133] In these studies, actions in the "congruent" case have a straightforward goal, and are easy to explain in terms of the actor's intention. The incongruent actions, on the other hand, require further explanation (why would someone twist empty space next to a gear?), and apparently demand more processing in the STS. This region is distinct from the temporoparietal area activated during false belief tasks.[133] pSTS activation in most of the above studies was largely right-lateralized, following the general trend in neuroimaging studies of social cognition and perception. Also right-lateralized are the TPJ activation during false belief tasks, the STS response to biological motion, and the FFA response to faces.


Neuropsychological evidence supports neuroimaging results regarding the neural basis of theory of mind. Studies with patients with a lesion of the frontal lobes and the temporoparietal junction of the brain (between the temporal lobe and parietal lobe) report that they have difficulty with some theory of mind tasks.[134] This shows that theory of mind abilities are associated with specific parts of the human brain. However, the fact that the medial prefrontal cortex and temporoparietal junction are necessary for theory of mind tasks does not imply that these regions are specific to that function.[121][135] TPJ and mPFC may subserve more general functions necessary for Theory of Mind.


Research by Vittorio Gallese, Luciano Fadiga, and Giacomo Rizzolatti[136] shows that some sensorimotor neurons, referred to as mirror neurons and first discovered in the premotor cortex of rhesus monkeys, may be involved in action understanding. Single-electrode recording revealed that these neurons fired when a monkey performed an action, as well as when the monkey viewed another agent performing the same action. fMRI studies with human participants show brain regions (assumed to contain mirror neurons) that are active when one person sees another person's goal-directed action.[137] These data led some authors to suggest that mirror neurons may provide the basis for theory of mind in the brain, and to support simulation theory of mind reading.[138]


There is also evidence against a link between mirror neurons and theory of mind. First, macaque monkeys have mirror neurons but do not seem to have a 'human-like' capacity to understand theory of mind and belief. Second, fMRI studies of theory of mind typically report activation in the mPFC, temporal poles, and TPJ or STS,[139] but those brain areas are not part of the mirror neuron system. Some investigators, like developmental psychologist Andrew Meltzoff and neuroscientist Jean Decety, believe that mirror neurons merely facilitate learning through imitation and may provide a precursor to the development of theory of mind.[140] Others, like philosopher Shaun Gallagher, suggest that mirror-neuron activation, on a number of counts, fails to meet the definition of simulation as proposed by the simulation theory of mindreading.[141][142]

In autism[edit]

Several neuroimaging studies have looked at the neural basis for theory of mind impairment in subjects with Asperger syndrome and high-functioning autism (HFA). The first PET study of theory of mind in autism (also the first neuroimaging study using a task-induced activation paradigm in autism) replicated a prior study in neurotypical individuals, which employed a story-comprehension task.[143] This study found displaced and diminished mPFC activation in subjects with autism. However, because the study used only six subjects with autism, and because the spatial resolution of PET imaging is relatively poor, these results should be considered preliminary.


A subsequent fMRI study scanned normally developing adults and adults with HFA while performing a "reading the mind in the eyes" task: viewing a photo of a human's eyes and choosing which of two adjectives better describes the person's mental state, versus a gender discrimination control.[144] The authors found activity in orbitofrontal cortex, STS, and amygdala in normal subjects, and found less amygdala activation and abnormal STS activation in subjects with autism.


A more recent PET study looked at brain activity in individuals with HFA and Asperger syndrome while viewing Heider-Simmel animations (see above) versus a random motion control.[145] In contrast to normally-developing subjects, those with autism showed little STS or FFA activation, and less mPFC and amygdala activation. Activity in extrastriate regions V3 and LO was identical across the two groups, suggesting intact lower-level visual processing in the subjects with autism. The study also reported less functional connectivity between STS and V3 in the autism group. However decreased temporal correlation between activity in STS and V3 would be expected simply from the lack of an evoked response in STS to intent-laden animations in subjects with autism. A more informative analysis would be to compute functional connectivity after regressing out evoked responses from all-time series.


A subsequent study, using the incongruent/congruent gaze-shift paradigm described above, found that in high-functioning adults with autism, posterior STS (pSTS) activation was undifferentiated while they watched a human shift gaze toward a target and then toward adjacent empty space.[146] The lack of additional STS processing in the incongruent state may suggest that these subjects fail to form an expectation of what the actor should do given contextual information, or that feedback about the violation of this expectation does not reach STS. Both explanations involve an impairment or deficit in the ability to link eye gaze shifts with intentional explanations. This study also found a significant anticorrelation between STS activation in the incongruent-congruent contrast and social subscale score on the Autism Diagnostic Interview-Revised, but not scores on the other subscales.


An fMRI study demonstrated that the right temporoparietal junction (rTPJ) of higher-functioning adults with autism was not more selectively activated for mentalizing judgments when compared to physical judgments about self and other.[147] rTPJ selectivity for mentalizing was also related to individual variation on clinical measures of social impairment: individuals whose rTPJ was increasingly more active for mentalizing compared to physical judgments were less socially impaired, while those who showed little to no difference in response to mentalizing or physical judgments were the most socially impaired. This evidence builds on work in typical development that suggests rTPJ is critical for representing mental state information, whether it is about oneself or others. It also points to an explanation at the neural level for the pervasive mind-blindness difficulties in autism that are evident throughout the lifespan.[148]

In schizophrenia[edit]

The brain regions associated with theory of mind include the superior temporal gyrus (STS), the temporoparietal junction (TPJ), the medial prefrontal cortex (mPFC), the precuneus, and the amygdala.[149] The reduced activity in the mPFC of individuals with schizophrenia is associated with theory of mind deficit and may explain impairments in social function among people with schizophrenia.[150] Increased neural activity in mPFC is related to better perspective-taking, emotion management, and increased social functioning.[150] Disrupted brain activities in areas related to theory of mind may increase social stress or disinterest in social interaction, and contribute to the social dysfunction associated with schizophrenia.[150]

Evolution[edit]

The evolutionary origin of theory of mind remains obscure. While many theories make claims about its role in the development of human language and social cognition, few of them specify in detail any evolutionary neurophysiological precursors. One theory claims that theory of mind has its roots in two defensive reactions—immobilization stress and tonic immobility—which are implicated in the handling of stressful encounters and also figure prominently in mammalian childrearing practice.[156] Their combined effect seems capable of producing many of the hallmarks of theory of mind, such as eye-contact, gaze-following, inhibitory control, and intentional attributions.

Excerpts taken from: Davis, E. (2007) "Mental Verbs in Nicaraguan Sign Language and the Role of Language in Theory of Mind". Undergraduate senior thesis, Barnard College, Columbia University.

Archived 21 October 2020 at the Wayback Machine

Eye Test Simon Baron Cohen

The Computational Theory of Mind

The Identity Theory of Mind

Sally-Anne and Smarties tests

Functional Contextualism

article in the Internet Encyclopedia of Philosophy

Theory of Mind

Research into Theory of mind