Thermonuclear weapon
A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lower mass, or a combination of these benefits. Characteristics of nuclear fusion reactions make possible the use of non-fissile depleted uranium as the weapon's main fuel, thus allowing more efficient use of scarce fissile material such as uranium-235 (235
U
) or plutonium-239 (239
Pu
). The first full-scale thermonuclear test was carried out by the United States in 1952 and the concept has since been employed by most of the world's nuclear powers in the design of their weapons.[1]
Modern fusion weapons essentially consist of two main components: a nuclear fission primary stage (fueled by 235
U
or 239
Pu
) and a separate nuclear fusion secondary stage containing thermonuclear fuel: heavy isotopes of hydrogen (deuterium and tritium) as the pure element or in modern weapons lithium deuteride. For this reason, thermonuclear weapons are often colloquially called hydrogen bombs or H-bombs.[note 1]
A fusion explosion begins with the detonation of the fission primary stage. Its temperature soars past 100 million kelvin, causing it to glow intensely with thermal ("soft") X-rays. These X-rays flood the void (the "radiation channel" often filled with polystyrene foam) between the primary and secondary assemblies placed within an enclosure called a radiation case, which confines the X-ray energy and resists its outward pressure. The distance separating the two assemblies ensures that debris fragments from the fission primary (which move much more slowly than X-ray photons) cannot disassemble the secondary before the fusion explosion runs to completion.
The secondary fusion stage—consisting of outer pusher/tamper, fusion fuel filler and central plutonium spark plug—is imploded by the X-ray energy impinging on its pusher/ tamper. This compresses the entire secondary stage and drives up the density of the plutonium spark plug. The density of the plutonium fuel rises to such an extent that the spark plug is driven into a supercritical state and it begins a nuclear fission chain reaction. The fission products of this chain reaction heat the highly compressed and thus super dense, thermonuclear fuel surrounding the spark plug to around 300 million kelvin, igniting fusion reactions between fusion fuel nuclei. In modern weapons fueled by lithium deuteride, the fissioning plutonium spark plug also emits free neutrons that collide with lithium nuclei and supply the tritium component of the thermonuclear fuel.
The secondary's relatively massive tamper (which resists outward expansion as the explosion proceeds) also serves as a thermal barrier to keep the fusion fuel filler from becoming too hot, which would spoil the compression. If made of uranium, enriched uranium or plutonium, the tamper captures fast fusion neutrons and undergoes fission itself, increasing the overall explosive yield. Additionally, in most designs the radiation case is also constructed of a material that undergoes fission driven by fast thermonuclear neutrons. Such bombs are classified as two stage weapons and most current Teller–Ulam designs are such fission-fusion-fission weapons. Fast fission of the tamper and radiation case is the main contribution to the total yield and is the dominant process that produces radioactive fission product fallout.[2][3]
Before Ivy Mike, the first U.S. test of a fusion weapon design, Operation Greenhouse in 1951 was the first American nuclear test series to test principles that led to the development of thermonuclear weapons. Sufficient fission was achieved to boost the associated fusion device and enough was learned to achieve a full-scale device within a year. The design of all modern thermonuclear weapons in the United States is known as the Teller–Ulam configuration for its two chief contributors, Edward Teller and Stanisław Ulam, who developed it in 1951[4] for the United States, with certain concepts developed with the contribution of physicist John von Neumann. Similar devices were developed by the Soviet Union, United Kingdom, France, China and India.[5] The thermonuclear Tsar Bomba was the most powerful bomb ever detonated.[6]
As thermonuclear weapons represent the most efficient design for weapon energy yield in weapons with yields above 50 kilotons of TNT (210 TJ), virtually all the nuclear weapons of this size deployed by the five nuclear-weapon states under the Non-Proliferation Treaty today are thermonuclear weapons using the Teller–Ulam design.[7]
A number of possible variations to the weapon design have been proposed:
Two special variations exist that will be discussed in a subsequent section: the cryogenically cooled liquid deuterium device used for the Ivy Mike test, and the putative design of the W88 nuclear warhead—a small, MIRVed version of the Teller–Ulam configuration with a prolate (egg or watermelon shaped) primary and an elliptical secondary.
Most bombs do not apparently have tertiary "stages"—that is, third compression stage(s), which are additional fusion stages compressed by a previous fusion stage. The fissioning of the last blanket of uranium, which provides about half the yield in large bombs, does not count as a "stage" in this terminology.
The U.S. tested three-stage bombs in several explosions (see Operation Redwing) but is thought to have fielded only one such tertiary model, i.e., a bomb in which a fission stage, followed by a fusion stage, finally compresses yet another fusion stage. This U.S. design was the heavy but highly efficient (i.e., nuclear weapon yield per unit bomb weight) 25 Mt (100 PJ) B41 nuclear bomb.[21] The Soviet Union is thought to have used multiple stages (including more than one tertiary fusion stage) in their 50 Mt (210 PJ) (100 Mt (420 PJ) in intended use) Tsar Bomba. The fissionable jacket could be replaced with lead, as was done with the Tsar Bomba. If any hydrogen bombs have been made from configurations other than those based on the Teller–Ulam design, the fact of it is not publicly known. A possible exception to this is the Soviet early Sloika design.
In essence, the Teller–Ulam configuration relies on at least two instances of implosion occurring: first, the conventional (chemical) explosives in the primary would compress the fissile core, resulting in a fission explosion many times more powerful than that which chemical explosives could achieve alone (first stage). Second, the radiation from the fissioning of the primary would be used to compress and ignite the secondary fusion stage, resulting in a fusion explosion many times more powerful than the fission explosion alone. This chain of compression could conceivably be continued with an arbitrary number of tertiary fusion stages, each igniting more fusion fuel in the next stage[22]: 192–193 [23] although this is debated (see more: Arbitrarily large yield debate). Finally, efficient bombs (but not so-called neutron bombs) end with the fissioning of the final natural uranium tamper, something that could not normally be achieved without the neutron flux provided by the fusion reactions in secondary or tertiary stages. Such designs are suggested to be capable of being scaled up to an arbitrary large yield (with apparently as many fusion stages as desired),[22]: 192–193 [23] potentially to the level of a "doomsday device." However, usually such weapons were not more than a dozen megatons, which was generally considered enough to destroy even the most hardened practical targets (for example, a control facility such as the Cheyenne Mountain Complex). Even such large bombs have been replaced by smaller yield bunker buster type nuclear bombs (see more: nuclear bunker buster).
As discussed above, for destruction of cities and non-hardened targets, breaking the mass of a single missile payload down into smaller MIRV bombs, in order to spread the energy of the explosions into a "pancake" area, is far more efficient in terms of area-destruction per unit of bomb energy. This also applies to single bombs deliverable by cruise missile or other system, such as a bomber, resulting in most operational warheads in the U.S. program having yields of less than 500 kt (2,100 TJ).
Nuclear reduction[edit]
In January 1986, Soviet leader Mikhail Gorbachev publicly proposed a three-stage program for abolishing the world's nuclear weapons by the end of the 20th century.[68] Two years before his death in 1989, Andrei Sakharov's comments at a scientists' forum helped begin the process for the elimination of thousands of nuclear ballistic missiles from the US and Soviet arsenals. Sakharov (1921–1989) was recruited into the Soviet Union's nuclear weapons program in 1948, a year after he completed his doctorate. In 1949 the US detected the first Soviet test of a fission bomb, and the two countries embarked on a desperate race to design a thermonuclear hydrogen bomb that was a thousand times more powerful. Like his US counterparts, Sakharov justified his H-bomb work by pointing to the danger of the other country's achieving a monopoly. But also like some of the US scientists who had worked on the Manhattan Project, he felt a responsibility to inform his country's political leadership and then the wider world about the dangers from nuclear weapons.[69] Sakharov's first attempt to influence policy was brought about by his concern about possible genetic damage from long-lived radioactive carbon-14 created in the atmosphere from nitrogen-14 by the enormous fluxes of neutrons released in H-bomb tests.[70] In 1968, a friend suggested that Sakharov write an essay about the role of the intelligentsia in world affairs. Self-publishing was the method at the time for spreading unapproved manuscripts in the Soviet Union. Many readers would create multiple copies by typing with multiple sheets of paper interleaved with carbon paper. One copy of Sakharov's essay, "Reflections on Progress, Peaceful Coexistence, and Intellectual Freedom", was smuggled out of the Soviet Union and published by the New York Times. More than 18 million reprints were produced during 1968–69. After the essay was published, Sakharov was barred from returning to work in the nuclear weapons program and took a research position in Moscow.[69] In 1980, after an interview with the New York Times in which he denounced the Soviet invasion of Afghanistan, the government put him beyond the reach of Western media by exiling him and his wife to Gorky. In March 1985, Gorbachev became general secretary of the Soviet Communist Party. More than a year and a half later, he persuaded the Politburo, the party's executive committee, to allow Sakharov and Bonner to return to Moscow. Sakharov was elected as an opposition member to the Soviet Congress of People's Deputies in 1989. Later that year he had a cardiac arrhythmia and died in his apartment. He left behind a draft of a new Soviet constitution that emphasized democracy and human rights.[70]
Variations[edit]
Ivy Mike[edit]
In his 1995 book Dark Sun: The Making of the Hydrogen Bomb, author Richard Rhodes describes in detail the internal components of the "Ivy Mike" Sausage device, based on information obtained from extensive interviews with the scientists and engineers who assembled it. According to Rhodes, the actual mechanism for the compression of the secondary was a combination of the radiation pressure, foam plasma pressure, and tamper-pusher ablation theories described above; the radiation from the primary heated the polyethylene foam lining of the casing to a plasma, which then re-radiated radiation into the secondary's pusher, causing its surface to ablate and driving it inwards, compressing the secondary, igniting the sparkplug, and causing the fusion reaction. The general applicability of this principle is unclear.[14]
W88[edit]
In 1999 a reporter for the San Jose Mercury News reported that the U.S. W88 nuclear warhead, a small MIRVed warhead used on the Trident II SLBM, had a prolate (egg or watermelon shaped) primary (code-named Komodo) and a spherical secondary (code-named Cursa) inside a specially shaped radiation case (known as the "peanut" for its shape). The value of an egg-shaped primary lies apparently in the fact that a MIRV warhead is limited by the diameter of the primary—if an egg-shaped primary can be made to work properly, then the MIRV warhead can be made considerably smaller yet still deliver a high-yield explosion—a W88 warhead manages to yield up to 475 kilotonnes of TNT (1,990 TJ) with a physics package 68.9 inches (1,750 mm) long, with a maximum diameter of 21.8 inches (550 mm), and by different estimates weighing in a range from 175 to 360 kilograms (386 to 794 lb).[77] The smaller warhead allows more of them to fit onto a single missile and improves basic flight properties such as speed and range.[78]