Moons of Gas Giants[edit]

Tidal heating is responsible for the geologic activity of the most volcanically active body in the Solar System: Io, a moon of Jupiter. Io's eccentricity persists as the result of its orbital resonances with the Galilean moons Europa and Ganymede.[1] The same mechanism has provided the energy to melt the lower layers of the ice surrounding the rocky mantle of Jupiter's next-closest large moon, Europa. However, the heating of the latter is weaker, because of reduced flexing—Europa has half Io's orbital frequency and a 14% smaller radius; also, while Europa's orbit is about twice as eccentric as Io's, tidal force falls off with the cube of distance and is only a quarter as strong at Europa. Jupiter maintains the moons' orbits via tides they raise on it and thus its rotational energy ultimately powers the system.[1] Saturn's moon Enceladus is similarly thought to have a liquid water ocean beneath its icy crust, due to tidal heating related to its resonance with Dione. The water vapor geysers which eject material from Enceladus are thought to be powered by friction generated within its interior.[2]

Earth[edit]

Munk & Wunsch (1998) estimated that Earth experiences 3.7 TW (0.0073 W/m2) of tidal heating, of which 95% (3.5 TW or 0.0069 W/m2) is associated with ocean tides and 5% (0.2 TW or 0.0004 W/m2) is associated with Earth tides, with 3.2 TW being due to tidal interactions with the Moon and 0.5 TW being due to tidal interactions with the Sun.[3] Egbert & Ray (2001) confirmed that overall estimate, writing "The total amount of tidal energy dissipated in the Earth-Moon-Sun system is now well-determined. The methods of space geodesy—altimetry, satellite laser ranging, lunar laser ranging—have converged to 3.7 TW ..."[4]


Heller et al. (2021) estimated that shortly after the Moon was formed, when the Moon orbited 10-15 times closer to Earth than it does now, tidal heating might have contributed ~10 W/m2 of heating over perhaps 100 million years, and that this could have accounted for a temperature increase of up to 5°C on the early Earth.[5][6]

Moon[edit]

Harada et al. (2014) proposed that tidal heating may have created a molten layer at the core-mantle boundary within Earth's Moon.[7]

Cryovolcano

Tidal acceleration

Tidal locking

Io Volcano Observer

Planetary differentiation