Katana VentraIP

Moving average

In statistics, a moving average (rolling average or running average or moving mean[1] or rolling mean) is a calculation to analyze data points by creating a series of averages of different selections of the full data set. Variations include: simple, cumulative, or weighted forms.

For other uses, see Moving-average model and Moving average (disambiguation).

Mathematically, a moving average is a type of convolution. Thus in signal processing it is viewed as a low-pass finite impulse response filter. Because the boxcar function outlines its filter coefficients, it is called a boxcar filter. It is sometimes followed by downsampling.


Given a series of numbers and a fixed subset size, the first element of the moving average is obtained by taking the average of the initial fixed subset of the number series. Then the subset is modified by "shifting forward"; that is, excluding the first number of the series and including the next value in the subset.


A moving average is commonly used with time series data to smooth out short-term fluctuations and highlight longer-term trends or cycles. The threshold between short-term and long-term depends on the application, and the parameters of the moving average will be set accordingly. It is also used in economics to examine gross domestic product, employment or other macroeconomic time series. When used with non-time series data, a moving average filters higher frequency components without any specific connection to time, although typically some kind of ordering is implied. Viewed simplistically it can be regarded as smoothing the data.

Other weightings[edit]

Other weighting systems are used occasionally – for example, in share trading a volume weighting will weight each time period in proportion to its trading volume.


A further weighting, used by actuaries, is Spencer's 15-Point Moving Average[7] (a central moving average). Its symmetric weight coefficients are [−3, −6, −5, 3, 21, 46, 67, 74, 67, 46, 21, 3, −5, −6, −3], which factors as [1, 1, 1, 1]×[1, 1, 1, 1]×[1, 1, 1, 1, 1]×[−3, 3, 4, 3, −3]/320 and leaves samples of any quadratic or cubic polynomial unchanged.[8][9]


Outside the world of finance, weighted running means have many forms and applications. Each weighting function or "kernel" has its own characteristics. In engineering and science the frequency and phase response of the filter is often of primary importance in understanding the desired and undesired distortions that a particular filter will apply to the data.


A mean does not just "smooth" the data. A mean is a form of low-pass filter. The effects of the particular filter used should be understood in order to make an appropriate choice. On this point, the French version of this article discusses the spectral effects of 3 kinds of means (cumulative, exponential, Gaussian).

Exponential smoothing

(LOESS and LOWESS)

Local regression

Kernel smoothing

Moving average convergence/divergence indicator

Martingale (probability theory)

Moving average crossover

Moving least squares

Rising moving average

Rolling hash

Running total

Savitzky–Golay filter

Window function

Zero lag exponential moving average