Katana VentraIP

Undecidable problem

In computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether an arbitrary program eventually halts when run.[1]

Background[edit]

A decision problem is a question which, for every input in some infinite set of inputs, answers "yes" or "no".[2]. Those inputs can be numbers (for example, the decision problem "is the input a prime number?") or other values of some other kind, such as strings of a formal language.


The formal representation of a decision problem is a subset of the natural numbers. For decision problems on natural numbers, the set consists of those numbers that the decision problem answers "yes" to. For example, the decision problem "is the input even?" is formalized as the set of even numbers. A decision problem whose input consists of strings or more complex values is formalized as the set of numbers that, via a specific Gödel numbering, correspond to inputs that satisfy the decision problem's criteria.


A decision problem A is called decidable or effectively solvable if the formalized set of A is a recursive set. Otherwise, A is called undecidable. A problem is called partially decidable, semi-decidable, solvable, or provable if A is a recursively enumerable set.[nb 1]

Decidability (logic)

Entscheidungsproblem

Proof of impossibility

Unknowability

Wicked problem