Unification (computer science)
In logic and computer science, specifically automated reasoning, unification is an algorithmic process of solving equations between symbolic expressions, each of the form Left-hand side = Right-hand side. For example, using x,y,z as variables, and taking f to be an uninterpreted function, the singleton equation set { f(1,y) = f(x,2) } is a syntactic first-order unification problem that has the substitution { x ↦ 1, y ↦ 2 } as its only solution.
Conventions differ on what values variables may assume and which expressions are considered equivalent. In first-order syntactic unification, variables range over first-order terms and equivalence is syntactic. This version of unification has a unique "best" answer and is used in logic programming and programming language type system implementation, especially in Hindley–Milner based type inference algorithms. In higher-order unification, possibly restricted to higher-order pattern unification, terms may include lambda expressions, and equivalence is up to beta-reduction. This version is used in proof assistants and higher-order logic programming, for example Isabelle, Twelf, and lambdaProlog. Finally, in semantic unification or E-unification, equality is subject to background knowledge and variables range over a variety of domains. This version is used in SMT solvers, term rewriting algorithms, and cryptographic protocol analysis.
Order-sorted unification[edit]
Order-sorted logic allows one to assign a sort, or type, to each term, and to declare a sort s1 a subsort of another sort s2, commonly written as s1 ⊆ s2. For example, when reаsoning about biological creatures, it is useful to declare a sort dog to be a subsort of a sort animal. Wherever a term of some sort s is required, a term of any subsort of s may be supplied instead.
For example, assuming a function declaration mother: animal → animal, and a constant declaration lassie: dog, the term mother(lassie) is perfectly valid and has the sort animal. In order to supply the information that the mother of a dog is a dog in turn, another declaration mother: dog → dog may be issued; this is called function overloading, similar to overloading in programming languages.
Walther gave a unification algorithm for terms in order-sorted logic, requiring for any two declared sorts s1, s2 their intersection s1 ∩ s2 to be declared, too: if x1 and x2 is a variable of sort s1 and s2, respectively, the equation x1 ≐ x2 has the solution { x1 = x, x2 = x }, where x: s1 ∩ s2.
[23]
After incorporating this algorithm into a clause-based automated theorem prover, he could solve a benchmark problem by translating it into order-sorted logic, thereby boiling it down an order of magnitude, as many unary predicates turned into sorts.
Smolka generalized order-sorted logic to allow for parametric polymorphism.
[24]
In his framework, subsort declarations are propagated to complex type expressions.
As a programming example, a parametric sort list(X) may be declared (with X being a type parameter as in a C++ template), and from a subsort declaration int ⊆ float the relation list(int) ⊆ list(float) is automatically inferred, meaning that each list of integers is also a list of floats.
Schmidt-Schauß generalized order-sorted logic to allow for term declarations.
[25]
As an example, assuming subsort declarations even ⊆ int and odd ⊆ int, a term declaration like ∀ i : int. (i + i) : even allows to declare a property of integer addition that could not be expressed by ordinary overloading.
Background on infinite trees:
Unification algorithm, Prolog II:
Applications: