Well-ordering principle
In mathematics, the well-ordering principle states that every non-empty subset of positive integers contains a least element.[1] In other words, the set of positive integers is well-ordered by its "natural" or "magnitude" order in which precedes if and only if is either or the sum of and some positive integer (other orderings include the ordering ; and ).
Not to be confused with Well-ordering theorem.The phrase "well-ordering principle" is sometimes taken to be synonymous with the "well-ordering theorem". On other occasions it is understood to be the proposition that the set of integers contains a well-ordered subset, called the natural numbers, in which every nonempty subset contains a least element.
Depending on the framework in which the natural numbers are introduced, this (second-order) property of the set of natural numbers is either an axiom or a provable theorem. For example:
In the second sense, this phrase is used when that proposition is relied on for the purpose of justifying proofs that take the following form: to prove that every natural number belongs to a specified set , assume the contrary, which implies that the set of counterexamples is non-empty and thus contains a smallest counterexample. Then show that for any counterexample there is a still smaller counterexample, producing a contradiction. This mode of argument is the contrapositive of proof by complete induction. It is known light-heartedly as the "minimal criminal" method and is similar in its nature to Fermat's method of "infinite descent".
Garrett Birkhoff and Saunders Mac Lane wrote in A Survey of Modern Algebra that this property, like the least upper bound axiom for real numbers, is non-algebraic; i.e., it cannot be deduced from the algebraic properties of the integers (which form an ordered integral domain).