Westinghouse Combustion Turbine Systems Division
The Westinghouse Combustion Turbine Systems Division (CTSD), part of Westinghouse Electric Corporation's[1] Westinghouse Power Generation[2] group, was originally located, along with the Steam Turbine Division (STD), in a major industrial manufacturing complex, referred to as the South Philadelphia Works, in Lester, Pennsylvania near to the Philadelphia International Airport.
Before first being called "CTSD" in 1978, the Westinghouse industrial and electric utility gas turbine business operation progressed through several other names starting with Small Steam & Gas Turbine Division (SSGT) in the 1950s through 1971, then Gas Turbine Systems Division (GTSD) and Generation Systems Division (GSD) through the mid-late 1970s.
The name CTSD came with the passage of energy legislation by the US government in 1978 which prohibited electric utilities from building new base load power plants that burned natural gas. Some participants in the industry decided to use the name "combustion turbine" in an attempt to gain some separation from the fact that the primary fuel for gas turbines in large power plants is natural gas.
Commonly referred to as a gas turbine, a modern combustion turbine can operate on a variety of gaseous and liquid fuels. The preferred liquid fuel is No. 2 distillate. With proper treatment,[3] crude and residual oil have been used. Fuel gases range from natural gas (essentially methane) to low-heating-value gases such as produced by gasification of coal or heavy liquids, or as by-product gases from blast furnaces. In fact, most gas turbines today are installed with dual- or multi-fuel capability to take advantage of changes in cost and availability of various fuels. Increased capability to burn high-hydrogen-content fuel gas has also been demonstrated, and the ability to operate on 100% hydrogen for zero carbon dioxide emissions is under development.
The story of Westinghouse gas turbine experience lists the many "firsts" achieved during the more than 50 years prior to the sale of the Power Generation Business Unit to Siemens, AG in 1998.[4] As indicated below, the history actually begins with the successful development of the first fully US-designed jet engine during World War II. The first industrial gas turbine installation took place in 1948 with the installation of a 2000 hp W21 at Mississippi River Fuel Corp. gas compression station at Wilmar, Arkansas, USA.
Gas turbine manufacturing plant at Round Rock, TX[edit]
Based on the surge of gas turbine business in the late 1960s, Westinghouse (following the example of market leader and archrival General Electric) decided to build a modern new gas turbine manufacturing plant at Round Rock, TX, near Austin. However, by the time that the plant went into operation around 1972, the US market for gas turbines was about to collapse due to the impact of the 1973 Arab-Israeli war and subsequent fears of fuel supply instability due to the OPEC oil embargo (see market data chart, above). Also, unlike GE's Greeneville, SC plant, the new Round Rock factory was not built as a standalone plant with full manufacturing capabilities, as already existed in Lester. Major components were shipped from Lester (and other suppliers) for final assembly at Round Rock.
As the market collapsed (see chart), Westinghouse management reduced the surplus of shop space allocated to gas turbines. Since Round Rock could not survive on its own, it was ultimately abandoned as a gas turbine manufacturing facility in 1976. Other large rotating equipment operations moved in, such as those of the E. Pittsburgh DC products and Buffalo Large Motors Division. Ultimately, the large motors operations of Westinghouse were sold to Taiwan Electric Co. (TECO) and the plant is now owned by TECO-Westinghouse and is used to serve its wind generator business.
Design features[edit]
From the earliest of its heavy-duty gas turbine designs, Westinghouse has retained time proven mechanical design features that have endured for more than 50 years and have been emulated by other manufacturers.[11]
Note the cold-end generator drive feature, original with Westinghouse and later adopted by others (including the industry leader in its own F-class design). This is ideal for heat recovery applications and avoids the need for a high-temperature flexible drive coupling in the exhaust end (characteristic of earlier designs of others).
Also, the two-bearing rotor design avoided the need for a high-temperature center bearing buried in the hot section of the engine (also characteristic of earlier designs of others).
Not mentioned on the list is the patented tangential exhaust casing struts designed to maintain rotor alignment.
In international markets[edit]
From the earliest days of Westinghouse's land-based gas turbine business, markets outside of the U.S. played a very important role in the growth and survival of the business. In the mid-1970s and through the early 1980s, the importance of the international markets, in particular in Saudi Arabia (see below), became critical to the survival of the gas turbine industry as the US electric utility market collapsed.
Since earliest applications[59] were primarily in the petrochemical industry, there were many units sold to oil refining and gas-pipeline companies going back to the first W31 (3000 hp) units sold in the mid-1950s for installation in Japan, Sumatra, Cuba and Aruba. These were all used as mechanical drive prime movers.
Other important early markets overseas included Libya, Iran and Nigeria (16 W72, 8300 hp mech drive units built by Werkspoor in the Netherlands), Venezuela, Brazil, Mexico, Colombia, Iraq, Syria (7 W82 units also built by Werkspoor), and many units, e.g. 27xW92 10,000 hp units, built for TransCanada and Westcoast Transmission, et al. for pipeline compressor stations in Canada.
The largest international project at the time came to be somewhat fortuitously ca. 1955 when ESSO (as Creole Petrol Co., Venezuela) was looking to replace several two-shaft GE mechanical drive units that had failed. Those failures had shown ESSO that a two-shaft solution was unsuitable for handling the tricky job of compressing of wet associated-gas for reinjection under Lake Maracaibo.
Westinghouse offered a direct-drive concept in the W101, which proved to be the replacement that was needed to do the job. During the 15-year period from 1956 through 1971, Westinghouse installed nearly 50 W101 direct-drive units on several floating platforms moored in place above the producing wells. Kudos to Tom Putz (Engineering Manager), Don Jones, Sales Manager, Joe Yindra, Project Engineer, and others on the team (including those at ESSO engineering) who made this a major success story and helped put Westinghouse gas turbines firmly on the map. (From interview with Don Jones – Dec. 2015)
Another important early international project for Westinghouse Gas Turbines was one of the earliest heat recovery applications. This was for the Panama Canal Co. and utilized two W171 (12,000 kW) units, ca. 1963.
Other important international markets[edit]
During the 1990s, in spite of a relative active U.S. market, Westinghouse participated actively in other significant international markets for gas turbines.[59]
These included major successes with customers in South Korea (some 35-40 units), especially Korean Electric Power Co. (KEPCO) and Hanwha Energy. In Latin America, a large market was developed in Venezuela, especially with Electricidad de Caracas, and in Colombia, with orders for W501D5 and 501F units obtained for several locations, including one in rebel-held jungle! A significant order was obtained in Argentina (CAPSA) for 3xW251B11 and 1x701D, and the first-ever large gas turbine orders were obtained for W501D5 units both in Peru and Ecuador.
In fact, in 1992, Westinghouse Power Generation Marketing received special corporate recognition as the "Best of the Best" for its international successes (mostly in Latin America) in placing gas turbine orders.
Several orders were also obtained during the period for both W251 and W501 EconoPacs for installation atop specially designed barges to produce floating portable power plants for deployment around the world. Most of these barges were built by Sabah Shipyards in Malaysia.