Wheel speed sensor
A wheel speed sensor (WSS) or vehicle speed sensor (VSS) is a type of tachometer. It is a sender device used for reading the speed of a vehicle's wheel rotation. It usually consists of a toothed ring and pickup.
Automotive wheel speed sensor[edit]
Purpose[edit]
The wheel speed sensor was initially used to replace the mechanical linkage from the wheels to the speedometer, eliminating cable breakage and simplifying the gauge construction by eliminating moving parts. These sensors also produce data that allows automated driving aids like ABS to function.
Construction[edit]
The most common wheel speed sensor system consists of a ferromagnetic toothed reluctor ring (tone wheel) and a sensor (which can be passive or active).
The tone wheel is typically made of steel and may be an open-air design, or sealed (as in the case of unitized bearing assemblies). The number of teeth is chosen as a trade-off between low-speed sensing/accuracy and high-speed sensing/cost. Greater numbers of teeth will require more machining operations and (in the case of passive sensors) produce a higher frequency output signal which may not be as easily interpreted at the receiving end, but give a better resolution and higher signal update rate.
In more advanced systems, the teeth can be asymmetrically shaped to allow the sensor to distinguish between forward and reverse rotation of the wheel.
A passive sensor typically consists of a ferromagnetic rod which is oriented to project radially from the tone wheel with a permanent magnet at the opposite end. The rod is wound with fine wire which experiences an induced alternating voltage as the tone wheel rotates, as the teeth interfere with the magnetic field. Passive sensors output a sinusoidal signal which grows in magnitude and frequency with wheel speed.
A variation of the passive sensor does not have a magnet backing it, but rather a tone wheel which consists of alternating magnetic poles produce the alternating voltage. The output of this sensor tends to resemble a square wave, rather than a sinusoid, but still increases in magnitude as wheels speed increases.
An active sensor is a passive sensor with signal conditioning circuitry built into the device. This signal conditioning may be amplifying the signal's magnitude; changing the signal's form to PWM, square wave, or others; or encoding the value into a communication protocol before transmission.
Variations[edit]
The vehicle speed sensor (VSS) may be, but is not always, a true wheel speed sensor. For example, in the Ford AOD transmission, the VSS is mounted to the tailshaft extension housing and is a self-contained tone ring and sensor. Though this does not give wheel speed (as each wheel in an axle with a differential is able to turn at differing speeds, and neither is solely dependent on the driveshaft for its final speed), under typical driving conditions this is close enough to provide the speedometer signal, and was used for the rear wheel ABS systems on 1987 and newer Ford F-Series, the first pickups with ABS.
Special purpose speed sensors[edit]
Road vehicles[edit]
Wheel speed sensors are a critical component of anti-lock braking systems.
Rotary speed sensors for rail vehicles[edit]
Many of the subsystems in a rail vehicle, such as a locomotive or multiple unit, depend on a reliable and precise rotary speed signal, in some cases as a measure of the speed or changes in the speed. This applies in particular to traction control, but also to wheel slide protection, registration, train control, door control and so on. These tasks are performed by a number of rotary speed sensors that may be found in various parts of the vehicle.
Speed sensor failures are frequent, and are mainly due to the extremely harsh operating conditions encountered in rail vehicles. The relevant standards specify detailed test criteria, but in practical operation the conditions encountered are often even more extreme (such as shock/vibration and especially electromagnetic compatibility (EMC)).
Rotary speed sensors for motors[edit]
Although rail vehicles occasionally do use drives without sensors, most need a rotary speed sensor for their regulator system. The most common type is a two-channel sensor that scans a toothed wheel on the motor shaft or gearbox which may be dedicated to this purpose or may be already present in the drive system.
Modern Hall effect sensors of this type make use of the principle of magnetic field modulation and are suitable for ferromagnetic target wheels with a module between m =1 and m = 3.5 (D.P.=25 to D.P.=7). The form of the teeth is of secondary importance; target wheels with involute or rectangular toothing can be scanned. Depending on the diameter and teeth of the wheel it is possible to get between 60 and 300 pulses per revolution, which is sufficient for drives of lower and medium traction performance.
This type of sensor normally consists of two hall effect sensors, a rare-earth magnet and appropriate evaluation electronics. The field of the magnet is modulated by the passing target teeth. This modulation is registered by the Hall sensors, converted by a comparator stage to a square wave signal and amplified in a driver stage.
The Hall effect varies greatly with temperature. The sensors’ sensitivity and also the signal offset therefore depend not only on the air gap but also on the temperature. This also very much reduces the maximum permissible air gap between the sensor and the target wheel. At room temperature an air gap of 2 to 3 mm can be tolerated without difficulty for a typical target wheel of module m = 2, but in the required temperature range of from −40 °C to 120 °C the maximum gap for effective signal registration drops to 1.3 mm.
Smaller pitch target wheels with module m = 1 are often used to get a higher time resolution or to make the construction more compact. In this case the maximum possible air gap is only 0.5 to 0.8 mm.
For the design engineer, the visible air gap that the sensor ends up with is primarily the result of the specific machine design, but is subject to whatever constraints are needed to register the rotary speed. If this means that the possible air gap has to lie within a very small range, then this will also restrict the mechanical tolerances of the motor housing and target wheels to prevent signal dropouts during operation. This means that in practice there may be problems, particularly with smaller pitched target wheels of module m = 1 and disadvantageous combinations of tolerances and extreme temperatures. From the point of view of the motor manufacturer, and even more so the operator, it is therefore better to look for speed sensors with a wider range of air gap.
The primary signal from a Hall sensor loses amplitude sharply as the air gap increases. For Hall sensor manufacturers this means that they need to provide maximum possible compensation for the Hall signal's physically induced offset drift. The conventional way of doing this is to measure the temperature at the sensor and use this information to compensate the offset, but this fails for two reasons: firstly because the drift does not vary linearly with the temperature, and secondly because not even the sign of the drift is the same for all sensors.
Some sensors now offer an integrated signal processor that attempts to correct the offset and amplitude of the Hall sensor signals. This correction enables a larger maximum permissible air gap at the speed sensor. On a module m = 1 target wheel these new sensors can tolerate an air gap of 1.4 mm, which is wider than that for conventional speed sensors on module m = 2 target wheels. On a module m = 2 target wheel the new speed sensors can tolerate gap of as much as 2.2 mm. It has also been possible to markedly increase the signal quality. Both the duty cycle and the phase displacement between the two channels is at least three times as stable in the face of fluctuating air gap and temperature drift. In addition, in spite of the complex electronics it has also been possible to increase the mean time between failures for the new speed sensors by a factor of three to four. So they not only provide more precise signals, their signal availability is also significantly better.
An alternative to Hall effect sensors with gears are sensors or encoders which use [magnetoresistance]. Because the target wheel is an active, multipole magnet, air gaps can be even larger, up to 4.0 mm. Because magnetoresistive sensors are angle-sensitive and amplitude-insensitive, signal quality is increased over Hall sensors in fluctuating gap applications. Also the signal quality is much higher, enabling [interpolation] within the sensor/encoder or by an external circuit.