
Aristotelian physics
Aristotelian physics is the form of natural philosophy described in the works of the Greek philosopher Aristotle (384–322 BC). In his work Physics, Aristotle intended to establish general principles of change that govern all natural bodies, both living and inanimate, celestial and terrestrial – including all motion (change with respect to place), quantitative change (change with respect to size or number), qualitative change, and substantial change ("coming to be" [coming into existence, 'generation'] or "passing away" [no longer existing, 'corruption']). To Aristotle, 'physics' was a broad field including subjects which would now be called the philosophy of mind, sensory experience, memory, anatomy and biology. It constitutes the foundation of the thought underlying many of his works.
Key concepts of Aristotelian physics include the structuring of the cosmos into concentric spheres, with the Earth at the centre and celestial spheres around it. The terrestrial sphere was made of four elements, namely earth, air, fire, and water, subject to change and decay. The celestial spheres were made of a fifth element, an unchangeable aether. Objects made of these elements have natural motions: those of earth and water tend to fall; those of air and fire, to rise. The speed of such motion depends on their weights and the density of the medium. Aristotle argued that a vacuum could not exist as speeds would become infinite.
Aristotle described four causes or explanations of change as seen on earth: the material, formal, efficient, and final causes of things. As regards living things, Aristotle's biology relied on observation of natural kinds, both the basic kinds and the groups to which these belonged. He did not conduct experiments in the modern sense, but relied on amassing data, observational procedures such as dissection, and making hypotheses about relationships between measurable quantities such as body size and lifespan.
Modern evaluations of Aristotle's physics[edit]
Modern scholars differ in their opinions of whether Aristotle's physics were sufficiently based on empirical observations to qualify as science, or else whether they were derived primarily from philosophical speculation and thus fail to satisfy the scientific method.[42]
Carlo Rovelli has argued that Aristotle's physics are an accurate and non-intuitive representation of a particular domain (motion in fluids), and thus are just as scientific as Newton's laws of motion, which also are accurate in some domains while failing in others (i.e. special and general relativity).[42]