Katana VentraIP

Automorphic form

In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group G to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups.

Modular forms are holomorphic automorphic forms defined over the groups SL(2, R) or PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms. More generally, one can use the adelic approach as a way of dealing with the whole family of congruence subgroups at once. From this point of view, an automorphic form over the group G(AF), for an algebraic group G and an algebraic number field F, is a complex-valued function on G(AF) that is left invariant under G(F) and satisfies certain smoothness and growth conditions.


Poincaré first discovered automorphic forms as generalizations of trigonometric and elliptic functions. Through the Langlands conjectures, automorphic forms play an important role in modern number theory.[1]

History[edit]

Before this very general setting was proposed (around 1960), there had already been substantial developments of automorphic forms other than modular forms. The case of Γ a Fuchsian group had already received attention before 1900 (see below). The Hilbert modular forms (also called Hilbert-Blumenthal forms) were proposed not long after that, though a full theory was long in coming. The Siegel modular forms, for which G is a symplectic group, arose naturally from considering moduli spaces and theta functions. The post-war interest in several complex variables made it natural to pursue the idea of automorphic form in the cases where the forms are indeed complex-analytic. Much work was done, in particular by Ilya Piatetski-Shapiro, in the years around 1960, in creating such a theory. The theory of the Selberg trace formula, as applied by others, showed the considerable depth of the theory. Robert Langlands showed how (in generality, many particular cases being known) the Riemann–Roch theorem could be applied to the calculation of dimensions of automorphic forms; this is a kind of post hoc check on the validity of the notion. He also produced the general theory of Eisenstein series, which corresponds to what in spectral theory terms would be the 'continuous spectrum' for this problem, leaving the cusp form or discrete part to investigate. From the point of view of number theory, the cusp forms had been recognised, since Srinivasa Ramanujan, as the heart of the matter.

Automorphic factor

Automorphic function

Maass cusp form

, a book by H. Jacquet and Robert Langlands

Automorphic Forms on GL(2)

Jacobi form

Stephen Gelbart (1975), "Automorphic forms on Adele groups",  9780608066042

ISBN

This article incorporates material from Jules Henri Poincaré on , which is licensed under the Creative Commons Attribution/Share-Alike License.

PlanetMath

Quotations related to Automorphic form at Wikiquote

Media related to Automorphic forms at Wikimedia Commons