Characteristic (algebra)
In mathematics, the characteristic of a ring R, often denoted char(R), is defined to be the smallest positive number of copies of the ring's multiplicative identity (1) that will sum to the additive identity (0). If no such number exists, the ring is said to have characteristic zero.
That is, char(R) is the smallest positive number n such that:[1](p 198, Thm. 23.14)
if such a number n exists, and 0 otherwise.
Case of rings[edit]
If R and S are rings and there exists a ring homomorphism R → S, then the characteristic of S divides the characteristic of R. This can sometimes be used to exclude the possibility of certain ring homomorphisms. The only ring with characteristic 1 is the zero ring, which has only a single element 0. If a nontrivial ring R does not have any nontrivial zero divisors, then its characteristic is either 0 or prime. In particular, this applies to all fields, to all integral domains, and to all division rings. Any ring of characteristic 0 is infinite.
The ring of integers modulo n has characteristic n. If R is a subring of S, then R and S have the same characteristic. For example, if p is prime and q(X) is an irreducible polynomial with coefficients in the field with p elements, then the quotient ring is a field of characteristic p. Another example: The field of complex numbers contains , so the characteristic of is 0.
A -algebra is equivalently a ring whose characteristic divides n. This is because for every ring R there is a ring homomorphism , and this map factors through if and only if the characteristic of R divides n. In this case for any r in the ring, then adding r to itself n times gives nr = 0.
If a commutative ring R has prime characteristic p, then we have (x + y)p = xp + yp for all elements x and y in R – the normally incorrect "freshman's dream" holds for power p.
The map x ↦ xp then defines a ring homomorphism R → R, which is called the Frobenius homomorphism. If R is an integral domain it is injective.