Ball (mathematics)
In mathematics, a ball is the solid figure bounded by a sphere; it is also called a solid sphere.[1] It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them).
These concepts are defined not only in three-dimensional Euclidean space but also for lower and higher dimensions, and for metric spaces in general. A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a line segment.
In other contexts, such as in Euclidean geometry and informal use, sphere is sometimes used to mean ball. In the field of topology the closed -dimensional ball is often denoted as or while the open -dimensional ball is or .
In topological spaces[edit]
One may talk about balls in any topological space X, not necessarily induced by a metric. An (open or closed) n-dimensional topological ball of X is any subset of X which is homeomorphic to an (open or closed) Euclidean n-ball. Topological n-balls are important in combinatorial topology, as the building blocks of cell complexes.
Any open topological n-ball is homeomorphic to the Cartesian space Rn and to the open unit n-cube (hypercube) (0, 1)n ⊆ Rn. Any closed topological n-ball is homeomorphic to the closed n-cube [0, 1]n.
An n-ball is homeomorphic to an m-ball if and only if n = m. The homeomorphisms between an open n-ball B and Rn can be classified in two classes, that can be identified with the two possible topological orientations of B.
A topological n-ball need not be smooth; if it is smooth, it need not be diffeomorphic to a Euclidean n-ball.
A number of special regions can be defined for a ball: