Fano plane
In finite geometry, the Fano plane (after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is PG(2, 2). Here, PG stands for "projective geometry", the first parameter is the geometric dimension (it is a plane, of dimension 2) and the second parameter is the order (the number of points per line, minus one).
Fano plane
The Fano plane is an example of a finite incidence structure, so many of its properties can be established using combinatorial techniques and other tools used in the study of incidence geometries. Since it is a projective space, algebraic techniques can also be effective tools in its study.
In a separate usage, a Fano plane is a projective plane that never satisfies Fano's axiom; in other words, the diagonal points of a complete quadrangle are always collinear.[1] "The" Fano plane of 7 points and lines is "a" Fano plane.
The Fano plane can be constructed via linear algebra as the projective plane over the finite field with two elements. One can similarly construct projective planes over any other finite field, with the Fano plane being the smallest.
Using the standard construction of projective spaces via homogeneous coordinates, the seven points of the Fano plane may be labeled with the seven non-zero ordered triples of binary digits 001, 010, 011, 100, 101, 110, and 111. This can be done in such a way that for every two points p and q, the third point on line pq has the label formed by adding the labels of p and q modulo 2 digit by digit (e.g., 010 and 111 resulting in 101). In other words, the points of the Fano plane correspond to the non-zero points of the finite vector space of dimension 3 over the finite field of order 2.
Due to this construction, the Fano plane is considered to be a Desarguesian plane, even though the plane is too small to contain a non-degenerate Desargues configuration (which requires 10 points and 10 lines).
The lines of the Fano plane may also be given homogeneous coordinates, again using non-zero triples of binary digits. With this system of coordinates, a point is incident to a line if the coordinate for the point and the coordinate for the line have an even number of positions at which they both have nonzero bits: for instance, the point 101 belongs to the line 111, because they have nonzero bits at two common positions. In terms of the underlying linear algebra, a point belongs to a line if the inner product of the vectors representing the point and line is zero.
The lines can be classified into three types.
Group-theoretic construction[edit]
Alternatively, the 7 points of the plane correspond to the 7 non-identity elements of the group (Z2)3 = Z2 × Z2 × Z2. The lines of the plane correspond to the subgroups of order 4, isomorphic to Z2 × Z2. The automorphism group GL(3, 2) of the group (Z2)3 is that of the Fano plane, and has order 168.
The Fano plane contains the following numbers of configurations of points and lines of different types. For each type of configuration, the number of copies of configuration multiplied by the number of symmetries of the plane that keep the configuration unchanged is equal to 168, the size of the entire collineation group, provided each copy can be mapped to any other copy (see Orbit-stabiliser theorem). Since the Fano plane is self-dual, these configurations come in dual pairs and it can be shown that the number of collineations fixing a configuration equals the number of collineations that fix its dual configuration.
The Fano plane is an example of an (n3)-configuration, that is, a set of n points and n lines with three points on each line and three lines through each point. The Fano plane, a (73)-configuration, is unique and is the smallest such configuration.[11] According to a theorem by Steinitz[12] configurations of this type can be realized in the Euclidean plane having at most one curved line (all other lines lying on Euclidean lines).[13]
The Fano plane can be extended in a third dimension to form a three-dimensional projective space, denoted by PG(3, 2). It has 15 points, 35 lines, and 15 planes and is the smallest three-dimensional projective space.[16] It also has the following properties:[17]