
In vitro
In vitro (meaning in glass, or in the glass) studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in biology and its subdisciplines are traditionally done in labware such as test tubes, flasks, Petri dishes, and microtiter plates. Studies conducted using components of an organism that have been isolated from their usual biological surroundings permit a more detailed or more convenient analysis than can be done with whole organisms; however, results obtained from in vitro experiments may not fully or accurately predict the effects on a whole organism. In contrast to in vitro experiments, in vivo studies are those conducted in living organisms, including humans, known as clinical trials, and whole plants.[1][2]
This article is about the type of scientific experiment. For other uses, see In vitro (disambiguation).Definition[edit]
In vitro (Latin for "in glass"; often not italicized in English usage[3][4][5]) studies are conducted using components of an organism that have been isolated from their usual biological surroundings, such as microorganisms, cells, or biological molecules. For example, microorganisms or cells can be studied in artificial culture media, and proteins can be examined in solutions. Colloquially called "test-tube experiments", these studies in biology, medicine, and their subdisciplines are traditionally done in test tubes, flasks, Petri dishes, etc.[6][7] They now involve the full range of techniques used in molecular biology, such as the omics.[8]
In contrast, studies conducted in living beings (microorganisms, animals, humans, or whole plants) are called in vivo.[9]
Examples of in vitro studies include: the isolation, growth and identification of cells derived from multicellular organisms (in cell or tissue culture); subcellular components (e.g. mitochondria or ribosomes); cellular or subcellular extracts (e.g. wheat germ or reticulocyte extracts); purified molecules (such as proteins, DNA, or RNA); and the commercial production of antibiotics and other pharmaceutical products.[10][11][12][13] Viruses, which only replicate in living cells, are studied in the laboratory in cell or tissue culture, and many animal virologists refer to such work as being in vitro to distinguish it from in vivo work in whole animals.[14][15]
Disadvantages[edit]
The primary disadvantage of in vitro experimental studies is that it may be challenging to extrapolate from the results of in vitro work back to the biology of the intact organism. Investigators doing in vitro work must be careful to avoid over-interpretation of their results, which can lead to erroneous conclusions about organismal and systems biology.[31][32]
For example, scientists developing a new viral drug to treat an infection with a pathogenic virus (e.g., HIV-1) may find that a candidate drug functions to prevent viral replication in an in vitro setting (typically cell culture). However, before this drug is used in the clinic, it must progress through a series of in vivo trials to determine if it is safe and effective in intact organisms (typically small animals, primates, and humans in succession). Typically, most candidate drugs that are effective in vitro prove to be ineffective in vivo because of issues associated with delivery of the drug to the affected tissues, toxicity towards essential parts of the organism that were not represented in the initial in vitro studies, or other issues.[33]
In vitro test batteries[edit]
A method which could help decrease animal testing is the use of in vitro batteries, where several in vitro assays are compiled to cover multiple endpoints. Within developmental neurotoxicity and reproductive toxicity there are hopes for test batteries to become easy screening methods for prioritization for which chemicals to be risk assessed and in which order.[34][35][36][37] Within ecotoxicology in vitro test batteries are already in use for regulatory purpose and for toxicological evaluation of chemicals.[38] In vitro tests can also be combined with in vivo testing to make a in vitro in vivo test battery, for example for pharmaceutical testing.[39]