Pons asinorum
In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ˈpɒnz ˌæsɪˈnɔːrəm/ PONZ ass-i-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem. The theorem appears as Proposition 5 of Book 1 in Euclid's Elements. Its converse is also true: if two angles of a triangle are equal, then the sides opposite them are also equal.
Pons asinorum is also used metaphorically for a problem or challenge which acts as a test of critical thinking, referring to the "asses' bridge's" ability to separate capable and incapable reasoners. Its first known usage in this context was in 1645.[1]
Etymology[edit]
There are two common explanations for the name pons asinorum, the simplest being that the diagram used resembles a physical bridge. But the more popular explanation is that it is the first real test in the Elements of the intelligence of the reader and functions as a "bridge" to the harder propositions that follow.[2]
Another medieval term for the isosceles triangle theorem was Elefuga which, according to Roger Bacon, comes from Greek elegia "misery", and Latin fuga "flight", that is "flight of the wretches". Though this etymology is dubious, it is echoed in Chaucer's use of the term "flemyng of wreches" for the theorem.[3]
The name Dulcarnon was given to the 47th proposition of Book I of Euclid, better known as the Pythagorean theorem, after the Arabic Dhū 'l qarnain ذُو ٱلْقَرْنَيْن, meaning "the owner of the two horns", because diagrams of the theorem showed two smaller squares like horns at the top of the figure. That term has similarly been used as a metaphor for a dilemma.[3] The name pons asinorum has itself occasionally been applied to the Pythagorean theorem.[4]
Gauss supposedly once suggested that understanding Euler's identity might play a similar role, as a benchmark indicating whether someone could become a first-class mathematician.[5]
Uses of the pons asinorum as a metaphor for a test of critical thinking include:
Artificial intelligence proof myth[edit]
A persistent piece of mathematical folklore claims that an artificial intelligence program discovered an original and more elegant proof of this theorem.[21][22] In fact, Marvin Minsky recounts that he had rediscovered the Pappus proof (which he was not aware of) by simulating what a mechanical theorem prover might do.[23][9]