Katana VentraIP

Joystick

A joystick, sometimes called a flight stick, is an input device consisting of a stick that pivots on a base and reports its angle or direction to the device it is controlling. A joystick, also known as the control column, is the principal control device in the cockpit of many civilian and military aircraft, either as a centre stick or side-stick. It has various switches to control functions of the aircraft controlled by the Pilot and First Officer of the flight.

"Control stick" redirects here. For the joystick often called a control stick in many controllers, see Analog stick.

Joysticks are often used to control video games, and usually have push-buttons whose state can be read by the computer. A popular variation of the joystick used on modern video game consoles is the analog stick. Joysticks are also used for controlling machines such as cranes, trucks, underwater unmanned vehicles, wheelchairs, surveillance cameras, and zero turning radius lawn mowers. Miniature finger-operated joysticks have been adopted as input devices for smaller electronic equipment such as mobile phones.

Origins[edit]

The name joystick is thought to originate with early 20th century French pilot Robert Esnault-Pelterie.[2] There are also competing claims on behalf of fellow pilots Robert Loraine, James Henry Joyce, and A. E. George. Loraine is cited by the Oxford English Dictionary for using the term "joystick" in his diary in 1909 when he went to Pau to learn to fly at Blériot's school. George was a pioneer aviator who with his colleague Jobling built and flew a biplane at Newcastle in England in 1910. The George and Jobling aircraft control column is in the collection of the Discovery Museum in Newcastle upon Tyne, England. Joysticks were present in early planes, though their mechanical origins are uncertain.[3] The coining of the term "joystick" may actually be credited to Loraine, as his is the earliest known usage of the term, although he most certainly did not invent the device.

Electronic joysticks[edit]

History[edit]

The electrical two-axis joystick was invented by C. B. Mirick at the United States Naval Research Laboratory (NRL) and patented in 1926 (U.S. Patent no. 1,597,416)".[4] NRL was actively developing remote controlled aircraft at the time and the joystick was possibly used to support this effort. In the awarded patent, Mirick writes: "My control system is particularly applicable in maneuvering aircraft without a pilot."[5]


The Germans developed an electrical two-axis joystick around 1944. The device was used as part of the Germans' Funkgerät FuG 203 Kehl radio control transmitter system used in certain German bomber aircraft, used to guide both the rocket-boosted anti-ship missile Henschel Hs 293, and the unpowered pioneering precision-guided munition Fritz-X,[6] against maritime and other targets. Here, the joystick of the Kehl transmitter was used by an operator to steer the missile towards its target. This joystick had on-off switches rather than analogue sensors. Both the Hs 293 and Fritz-X used FuG 230 Straßburg radio receivers in them to send the Kehl's control signals to the ordnance's control surfaces. A comparable joystick unit was used for the contemporary American Azon steerable munition, strictly to laterally steer the munition in the yaw axis only.[7]


This German invention was picked up by someone in the team of scientists assembled at the Heeresversuchsanstalt in Peenemünde. Here a part of the team on the German rocket program was developing the Wasserfall missile, a variant of the V-2 rocket, the first ground-to-air missile. The Wasserfall steering equipment converted the electrical signal to radio signals and transmitted these to the missile.

Industrial applications[edit]

In recent times, the employment of joysticks has become commonplace in many industrial and manufacturing applications, such as cranes, assembly lines, forestry equipment, mining trucks, and excavators. In fact, the use of such joysticks is in such high demand, that it has virtually replaced the traditional mechanical control lever in nearly all modern hydraulic control systems. Additionally, most unmanned aerial vehicles (UAVs) and submersible remotely operated vehicles (ROVs) require at least one joystick to control either the vehicle, the on-board cameras, sensors and/or manipulators.


Due to the highly hands-on, rough nature of such applications, the industrial joystick tends to be more robust than the typical video-game controller, and able to function over a high cycle life. This led to the development and employment of Hall effect sensing to such applications in the 1980s as a means of contactless sensing. Several companies produce joysticks for industrial applications using Hall effect technology. Another technology used in joystick design is the use of strain gauges to build force transducers from which the output is proportional to the force applied rather than physical deflection. Miniature force transducers are used as additional controls on joysticks for menu selection functions.


Some larger manufacturers of joysticks are able to customize joystick handles and grips specific to the OEM needs while small regional manufacturers often concentrate on selling standard products at higher prices to smaller OEMs.

Assistive technology[edit]

Specialist joysticks, classed as an assistive technology pointing device, are used to replace the computer mouse for people with fairly severe physical disabilities. Rather than controlling games, these joysticks control the pointer. They are often useful to people with athetoid conditions, such as cerebral palsy, who find them easier to grasp than a standard mouse.[46] Miniature joysticks are available for people with conditions involving muscular weakness such as muscular dystrophy or motor neurone disease as well. They are also used on electric powered wheelchairs for control since they are simple and effective to use as a control method.[47]

Aircraft flight control system

The Arcade (joystick)

Flight simulator

Game controller

Gamepad

Glossary of computer hardware terms

Gravis PC GamePad

Kempston joystick

TAC-2

Yoke (aircraft)

[at Wikidata]. "Fire-Control and Human-Computer Interaction: Towards a History of the Computer Mouse (1940–1965)" (PDF). Mindell, David. Massachusetts Institute of Technology, Program in Science, Technology, and Society. Archived (PDF) from the original on 2021-06-28. Retrieved 2021-08-24. (11 pages) (NB. This is based on an earlier German article published in 1996 in Lab. Jahrbuch 1995/1996 für Künste und Apparate (350 pages) by Kunsthochschule für Medien Köln mit dem Verein der Freunde der Kunsthochschule für Medien Köln; Verlag der Buchhandlung Walther König in Cologne, Germany. ISBN 3-88375-245-2.)

Roch, Axel