Machine learning
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions.[1] Recently, artificial neural networks have been able to surpass many previous approaches in performance.[2][3]
For the journal, see Machine Learning (journal).
ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine.[4][5] When applied to business problems, it is known under the name predictive analytics. Although not all machine learning is statistically based, computational statistics is an important source of the field's methods.
The mathematical foundations of ML are provided by mathematical optimization (mathematical programming) methods. Data mining is a related (parallel) field of study, focusing on exploratory data analysis (EDA) through unsupervised learning.[7][8]
From a theoretical viewpoint, probably approximately correct (PAC) learning provides a framework for describing machine learning.
Model assessments
Classification of machine learning models can be validated by accuracy estimation techniques like the holdout method, which splits the data in a training and test set (conventionally 2/3 training set and 1/3 test set designation) and evaluates the performance of the training model on the test set. In comparison, the K-fold-cross-validation method randomly partitions the data into K subsets and then K experiments are performed each respectively considering 1 subset for evaluation and the remaining K-1 subsets for training the model. In addition to the holdout and cross-validation methods, bootstrap, which samples n instances with replacement from the dataset, can be used to assess model accuracy.[139]
In addition to overall accuracy, investigators frequently report sensitivity and specificity meaning True Positive Rate (TPR) and True Negative Rate (TNR) respectively. Similarly, investigators sometimes report the false positive rate (FPR) as well as the false negative rate (FNR). However, these rates are ratios that fail to reveal their numerators and denominators. The total operating characteristic (TOC) is an effective method to express a model's diagnostic ability. TOC shows the numerators and denominators of the previously mentioned rates, thus TOC provides more information than the commonly used receiver operating characteristic (ROC) and ROC's associated area under the curve (AUC).[140]