Mass–energy equivalence
In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement.[1][2] The principle is described by the physicist Albert Einstein's formula: .[3] In a reference frame where the system is moving, its relativistic energy and relativistic mass (instead of rest mass) obey the same formula.
"E=MC²" and "E=mc²" redirect here. For other uses, see E=MC² (disambiguation).
The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c2). Because the speed of light is a large number in everyday units (approximately 300000 km/s or 186000 mi/s), the formula implies that a small amount of "rest mass", measured when the system is at rest, corresponds to an enormous amount of energy, which is independent of the composition of the matter.
Rest mass, also called invariant mass, is a fundamental physical property that is independent of momentum, even at extreme speeds approaching the speed of light. Its value is the same in all inertial frames of reference. Massless particles such as photons have zero invariant mass, but massless free particles have both momentum and energy.
The equivalence principle implies that when mass is lost in chemical reactions or nuclear reactions, a corresponding amount of energy will be released. The energy can be released to the environment (outside of the system being considered) as radiant energy, such as light, or as thermal energy. The principle is fundamental to many fields of physics, including nuclear and particle physics.
Mass–energy equivalence arose from special relativity as a paradox described by the French polymath Henri Poincaré (1854–1912).[4] Einstein was the first to propose the equivalence of mass and energy as a general principle and a consequence of the symmetries of space and time. The principle first appeared in "Does the inertia of a body depend upon its energy-content?", one of his annus mirabilis papers, published on 21 November 1905.[5][6] The formula and its relationship to momentum, as described by the energy–momentum relation, were later developed by other physicists.
Efficiency[edit]
In some reactions, matter particles can be destroyed and their associated energy released to the environment as other forms of energy, such as light and heat.[1] One example of such a conversion takes place in elementary particle interactions, where the rest energy is transformed into kinetic energy.[1] Such conversions between types of energy happen in nuclear weapons, in which the protons and neutrons in atomic nuclei lose a small fraction of their original mass, though the mass lost is not due to the destruction of any smaller constituents. Nuclear fission allows a tiny fraction of the energy associated with the mass to be converted into usable energy such as radiation; in the decay of the uranium, for instance, about 0.1% of the mass of the original atom is lost.[19] In theory, it should be possible to destroy matter and convert all of the rest-energy associated with matter into heat and light, but none of the theoretically known methods are practical. One way to harness all the energy associated with mass is to annihilate matter with antimatter. Antimatter is rare in our universe, however, and the known mechanisms of production require more usable energy than would be released in annihilation. CERN estimated in 2011 that over a billion times more energy is required to make and store antimatter than could be released in its annihilation.[20]
As most of the mass which comprises ordinary objects resides in protons and neutrons, converting all the energy of ordinary matter into more useful forms requires that the protons and neutrons be converted to lighter particles, or particles with no mass at all. In the Standard Model of particle physics, the number of protons plus neutrons is nearly exactly conserved. Despite this, Gerard 't Hooft showed that there is a process that converts protons and neutrons to antielectrons and neutrinos.[21] This is the weak SU(2) instanton proposed by the physicists Alexander Belavin, Alexander Markovich Polyakov, Albert Schwarz, and Yu. S. Tyupkin.[22] This process, can in principle destroy matter and convert all the energy of matter into neutrinos and usable energy, but it is normally extraordinarily slow. It was later shown that the process occurs rapidly at extremely high temperatures that would only have been reached shortly after the Big Bang.[23]
Many extensions of the standard model contain magnetic monopoles, and in some models of grand unification, these monopoles catalyze proton decay, a process known as the Callan–Rubakov effect.[24] This process would be an efficient mass–energy conversion at ordinary temperatures, but it requires making monopoles and anti-monopoles, whose production is expected to be inefficient. Another method of completely annihilating matter uses the gravitational field of black holes. The British theoretical physicist Stephen Hawking theorized[25] it is possible to throw matter into a black hole and use the emitted heat to generate power. According to the theory of Hawking radiation, however, larger black holes radiate less than smaller ones, so that usable power can only be produced by small black holes.