Katana VentraIP

Natural language processing

Natural language processing (NLP) is an interdisciplinary subfield of computer science - specifically Artificial Intelligence - and linguistics. It is primarily concerned with providing computers the ability to process data encoded in natural language, typically collected in text corpora, using either rule-based, statistical or neural-based approaches of machine learning and deep learning.

For other uses, see NLP.

1950s: The in 1954 involved fully automatic translation of more than sixty Russian sentences into English. The authors claimed that within three or five years, machine translation would be a solved problem.[2] However, real progress was much slower, and after the ALPAC report in 1966, which found that ten-year-long research had failed to fulfill the expectations, funding for machine translation was dramatically reduced. Little further research in machine translation was conducted in America (though some research continued elsewhere, such as Japan and Europe[3]) until the late 1980s when the first statistical machine translation systems were developed.

Georgetown experiment

1960s: Some notably successful natural language processing systems developed in the 1960s were , a natural language system working in restricted "blocks worlds" with restricted vocabularies, and ELIZA, a simulation of a Rogerian psychotherapist, written by Joseph Weizenbaum between 1964 and 1966. Using almost no information about human thought or emotion, ELIZA sometimes provided a startlingly human-like interaction. When the "patient" exceeded the very small knowledge base, ELIZA might provide a generic response, for example, responding to "My head hurts" with "Why do you say your head hurts?". Ross Quillian's successful work on natural language was demonstrated with a vocabulary of only twenty words, because that was all that would fit in a computer memory at the time.[4]

SHRDLU

both statistical and neural networks methods can focus more on the most common cases extracted from a corpus of texts, whereas the rule-based approach needs to provide rules for both rare cases and common ones equally.

Interest on increasingly abstract, "cognitive" aspects of natural language (1999–2001: shallow parsing, 2002–03: named entity recognition, 2006–09/2017–18: dependency syntax, 2004–05/2008–09 semantic role labelling, 2011–12 coreference, 2015–16: discourse parsing, 2019: semantic parsing).

Increasing interest in multilinguality, and, potentially, multimodality (English since 1999; Spanish, Dutch since 2002; German since 2003; Bulgarian, Danish, Japanese, Portuguese, Slovenian, Swedish, Turkish since 2006; Basque, Catalan, Chinese, Greek, Hungarian, Italian, Turkish since 2007; Czech since 2009; Arabic since 2012; 2017: 40+ languages; 2018: 60+/100+ languages)

Elimination of symbolic representations (rule-based over supervised towards weakly supervised methods, representation learning and end-to-end systems)

Media related to Natural language processing at Wikimedia Commons