Katana VentraIP

Next Generation Air Transportation System

The Next Generation Air Transportation System (NextGen) is an ongoing United States Federal Aviation Administration (FAA) project to modernize the National Airspace System (NAS). The FAA began work on NextGen improvements in 2007 and plans to finish the final implementation segment by 2030.[1][2] The goals of the modernization include using new technologies and procedures to increase the safety, efficiency, capacity, access, flexibility, predictability, and resilience of the NAS while reducing the environmental impact of aviation.

History[edit]

The need for NextGen became apparent during the summer of 2000 when air travel was impeded by severe congestion and costly delays. Two years later, the Commission on the Future of the U.S. Aerospace Industry recommended that a multi-agency task force develop an integrated plan to transform the U.S. air transportation system. In 2003, Congress passed the Vision 100 – Century of Aviation Reauthorization Act, which established the Joint Planning and Development Office (JPDO) to create a unified vision of what the U.S. air transportation system should deliver for the next generation and beyond, to develop and coordinate long-term research plans, and to sponsor cross-agency mission research.


The result of the JPDO's efforts was the creation of the "Integrated National Plan for the Next Generation Air Transportation System" in 2004,[3] which defined high-level goals, objectives, and requirements to transform the air transportation system. In addition to the Department of Transportation and FAA, the plan involved other government agencies with responsibilities in air transportation services, including the National Aeronautics and Space Administration (NASA), National Weather Service, Department of Defense, and Transportation Security Administration.


The JPDO released the "Concept of Operations for the Next Generation Air Transportation System"[4] to the aviation stakeholder community in 2007. The concept of operations provided the overview of NextGen goals for 2025. Growth of the NextGen concept was evolutionary, and the JPDO document continued to be updated through 2011. The same year, the FAA published the first version of its expanded Operational Evolution Partnership,[5] which outlined the agency's path to NextGen through 2025.


The original integrated national plan included airport surface and passenger terminal operations and was known as a "curb-to-curb" solution. The concept of operations was intended to drive cross-agency research to validate the concepts and to eliminate ideas and alternatives that were not operationally feasible or beneficial. The FAA focused on the pieces of the air transportation system for which it was responsible – the "gate-to-gate" components. In 2011, the FAA published the report "NextGen Mid-Term Concept of Operations for the National Airspace System." The FAA concept of operations was consistent with the JPDO's broad set of objectives, including maintaining safety and security, increasing capacity and efficiency, ensuring access to airspace and airports, and mitigating environmental impacts. The report identified several key transformational concepts as necessary to achieve NextGen goals and objectives, such as precision navigation and network-enabled information access.


Changes were underway in 2008 when the FAA started to move key parts of NextGen, such as Automatic Dependent Surveillance–Broadcast (ADS-B), from design to delivery. NextGen progress involved expanded research and development capability, participation by the aviation industry and international partners, and support by the White House and Congress, which are highlighted in this section.


The agency established a research and development facility, known as a testbed, at Embry-Riddle Aeronautical University in Daytona Beach, Florida, in 2008. In 2010, the FAA dedicated another testbed, the NextGen Integration and Evaluation Capability Laboratory at the William J. Hughes Technical Center in Atlantic City, New Jersey, for researchers to simulate and evaluate the effects of NextGen components on the NAS. The lab's capability grew in 2013 with a contract awarded to General Dynamics to provide engineering, software design and development, infrastructure, and administrative support.[6]


In 2008, the FAA signed agreements with Honeywell and ACSS to accelerate testing and installation of NextGen technology to detect and alert pilots of safety hazards on the airport surface.[7] NetJets also agreed to equip part of its fleet to test some programs in various areas of the United States.[8] By 2010, the FAA awarded Computer Support Services Inc. a $280 million contract to perform engineering work for NextGen, the first of six contracts that would be awarded under an umbrella portfolio contract. Boeing, General Dynamics, and ITT Corp. received FAA contracts worth up to $4.4 billion to demonstrate on a large scale how NextGen concepts, procedures, and technologies could be integrated into the current NAS. In 2012, the FAA selected Harris Corp., which then subcontracted Dataprobe, to develop the NAS Voice System and manage a $331 million Data Communications Integrated Services contract.[9][10] The FAA and Harris Corp. canceled the contract for the NAS Voice System in 2018, and there has been no replacement.[11]


Airlines also became involved in NextGen. In 2011, the FAA signed an agreement with JetBlue to allow the carrier to fly select flights equipped with ADS-B, opening the airline to improved routing and giving the FAA NextGen data through real-time operational evaluations. United Airlines in 2013 announced plans to become the first carrier to equip a portion of its fleet with avionics necessary for Data Communications (Data Comm) under the FAA NextGen Data Comm avionics equipage program. The program was funded to equip 1,900 aircraft across the industry to ensure enough aircraft would participate in Data Comm.


To develop industry consensus for the FAA's midterm goals, the agency established a new task force through RTCA in 2009.[12] The FAA wanted the task force to examine how industry could contribute to and benefit from NextGen, and the agency unveiled a plan in 2010 on how to implement recommendations.[13]


The NextGen Advisory Committee (NAC),[14][15] established in 2010 to address the task force recommendation to continue industry collaboration, is a federal advisory group comprising aviation stakeholders formed to advise on policy-level NextGen implementation issues facing the aviation community. The FAA and NAC in 2014 agreed on the NextGen Priorities Joint Implementation Plan to accelerate delivery of four core NextGen initiatives over three years to improve efficiency: optimizing operations at airports with multiple runways, increasing the efficiency of surface operations, updating the navigation system from ground-based to primarily satellite-based, and improving communications between aircraft and the ground through a digital system.


The FAA seeks to ensure international air traffic management interoperability and system harmonization for improved safety and efficiency. In 2010, the FAA and the European Commission agreed to cooperate in 22 areas to help in joint research and development of NextGen and Single European Sky ATM Research (SESAR) projects. By 2012, the FAA and the A6 alliance of European air navigation service providers agreed to work toward an interoperable aviation system, and work together to deploy and implement NextGen and SESAR.


Executive Order 13479, Transformation of the National Air Transportation System,[16] signed in 2008 mandated the Secretary of Transportation to establish a NextGen support staff. The FAA Modernization and Reform Act of 2012[17] included establishing deadlines for adopting existing NextGen navigation and surveillance technology and mandated development of performance-based navigation procedures at the nation's 35 busiest airports by 2015.


In 2010, the FAA's Aviation Safety organization released a work plan that identified how the safety staff would set NextGen standards and oversee safe implementation of new technologies, processes, and procedures. The FAA also issued a final rule mandating NextGen performance requirements for aircraft surveillance equipment. It required aircraft flying in a large portion of controlled U.S. airspace to be equipped for ADS-B Out by January 1, 2020.

Justification[edit]

A Department of Transportation 30-year outlook report published in 2016, "Beyond Traffic: Trends and Choices 2045",[18] estimated flight delays and congestion cost the U.S. economy more than $20 billion each year. In addition, the report predicted the total number of people flying on U.S. airlines would increase by 50 percent over the next two decades. For capacity to keep pace with increased demand for services, changes were needed in how services were provided.[2]


In 2020, civil air transportation contributed $900 million in U.S. economic activity, supported 4.9 million jobs, and made up 2.3 percent of the U.S. gross domestic product.[19] NextGen is delivering benefits to continue to support U.S. aviation.[20] Air traffic controllers have better information to track and separate aircraft safely and efficiently. Pilots have more aeronautical, traffic, and weather information in the cockpit. Airlines fly shorter, more direct routes to get passengers to their destinations faster while burning less fuel and producing fewer emissions.[21][22][23]


NextGen helps aircraft operators, passengers, the government, and the general public through enhanced safety, greater efficiency, and increased capacity. Monetized benefits comprise internal FAA cost savings, reduced passenger travel time, decreased aircraft operating costs, lower fuel consumption, fewer travel delays, avoided cancellations, additional flights, reduced carbon dioxide emissions, reduced injuries and fatalities, and fewer aircraft losses and damages. NextGen systems can also increase controller and pilot productivity, such as with Data Communications.[24]


NextGen improvements are estimated to save 2.8 billion gallons of fuel through 2030[24] and reduce carbon emissions by more than 650 million metric tons from 2020 to 2040.[25] Implemented changes have produced an estimated $10.9 billion in benefits from 2010 to 2023.[26]

Implementation[edit]

As the NextGen concept formed, the FAA planned its implementation. The agency worked with industry to identify capabilities taking advantage of existing aircraft equipage.[14] This strategy enabled airspace users to realize early benefits while keeping NextGen on course to achieve the FAA's long-term goal of trajectory-based operations (TBO).


Next, the FAA started replacing its infrastructure. Based on previous lessons learned, the agency determined the best way to upgrade its services was to begin with a new infrastructure that could accommodate the latest enabling technologies and advanced capabilities rather than adding one-off improvements to an aging infrastructure that couldn't accomplish broader transformation.


The FAA programs for En Route Automation Modernization (ERAM) and Terminal Automation Modernization and Replacement (TAMR) are foundational pieces upon which the FAA could build the NextGen vision. These programs support NextGen objectives with modern software architectures that serve as the platform for new capabilities for air traffic controllers and managers.


The FAA uses a widely accepted model for building large-scale automation systems. Program lifecycles are continuous with a planned schedule of technology refreshes. For example, the FAA finished installing the original hardware for ERAM in 2008, and completed software and program acceptance in 2015. In 2016, the agency updated the technology of all major system components that were becoming obsolete. This approach is common to maintain the latest level of technology.


On top of the foundational systems, the FAA then identified key enabling systems that improve communications, navigation, surveillance, traffic flow automation, information sharing, and weather systems. Integrating these systems is anticipated to transform air traffic management to keep pace with the growing needs of an increasingly diverse mix of air transportation system users without sacrificing safety.


Integration is necessary to achieve TBO, which is a method of strategically planning and managing air traffic from airport to airport for optimal performance by using the aircraft's ability to fly precise paths, metering traffic flow using time instead of distance, and faster information sharing between pilots, flight dispatchers, and controllers and managers.[27]


With TBO, the FAA and operators will have improved knowledge of where and when an aircraft is expected to be throughout its flight.[28] This information will be shared between air and ground automation systems and used to better assess how to balance demand and capacity, and minimize the consequences of disruptions due to weather, or system or facility outages. TBO's main benefits are improved flight efficiency, and increased throughput, predictability, and operator flexibility. Its initial operating areas are the Northeast Corridor, Mid-Atlantic Region, Northwest Mountain Region, and Southwest. TBO expanded to the Southeast in 2023.


NextGen is a complex, large-scale system of systems implemented over decades. Systems are always in various stages of lifecycle management from research to technical refreshes. FAA planning reports are used to map the evolution from the legacy National Airspace System (NAS) to NextGen. To manage NextGen with short-term funding horizons, the FAA rolled out improvements in smaller increments with more program segments to ensure affordability.


The FAA is using knowledge gained since 2011 when it published the NextGen Mid-Term Concept of Operations. Working closely with stakeholders, the FAA invested in research and pre-implementation work to determine the feasibility of advanced concepts and their associated benefits.[2] The aviation community understood that many, but not all, of the concepts would produce positive business cases once research and pre-implementation work was underway, and that some goals would be replaced by other concepts in an evolving aviation environment. The FAA refined the path that the NextGen planners envisioned with a few adjustments, eliminating some concepts that were high cost, high risk, or of low benefit based on research and industry feedback.


Six concepts that posed too high a technical risk, for instance, those with no available technical solution, were deferred beyond 2030. Some concepts that required more research to garner evidence of perceived operational benefits also were deferred for implementation into the later segments of NextGen.[2]


The FAA had scheduled initial implementation of all major planned systems by 2025 but not the full integration necessary to provide the complete set of anticipated NextGen benefits. The agency now expects to finish all the main NextGen components by 2030.[29][30][31][32] Benefits will accrue through enterprise-level advanced applications, more aircraft equipage, and full workforce adoption of TBO.[2]

Traffic Flow Management System (TFMS)

Time Based Flow Management (TBFM)

Terminal Flight Data Manager (TFDM)

Future[edit]

The FAA Reauthorization Act of 2024 gives an end date of the FAA Office of NextGen and the work of this office as December 31, 2025. All unfinished NextGen programs will transfer to the new Airspace Modernization Office.[356]


Building upon NextGen and also supporting trajectory-based operations, the next FAA initiative for U.S. National Airspace System modernization is going to be centered on information.[357] The FAA published "Charting Aviation's Future: Vision for an Info-Centric National Airspace System" in 2022 to begin the discussion of what comes after NextGen. This initiative intends to incorporate innovative technologies into a fully integrated information environment for all types of operations, from the smallest drone to the largest spacecraft. The vision covers three areas: operations, infrastructure, and integrated safety management.

FAA Office of NextGen

FAA NAS Animated Storyboard

FAA Community Engagement

FAA NextGen Videos