Katana VentraIP

Opticks

Opticks: or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light is a book by Isaac Newton that was published in English in 1704 (a scholarly Latin translation appeared in 1706).[1] The book analyzes the fundamental nature of light by means of the refraction of light with prisms and lenses, the diffraction of light by closely spaced sheets of glass, and the behaviour of color mixtures with spectral lights or pigment powders. Opticks was Newton's second major book on physical science and it is considered one of the three major works on optics during the Scientific Revolution (alongside Kepler's Astronomiae Pars Optica and Huygens' Traité de la Lumière). Newton's name did not appear on the title page of the first edition of Opticks.

This article is about the book by Newton. For the subject in general, see Optics. For the computer program, see Opticks (software).

Author

Non-fiction

1704

Great Britain

Print

Overview[edit]

The publication of Opticks represented a major contribution to science, different from but in some ways rivalling the Principia, yet Isaac Newton's name did not appear on the cover page of the first edition. Opticks is largely a record of experiments and the deductions made from them, covering a wide range of topics in what was later to be known as physical optics.[1] That is, this work is not a geometric discussion of catoptrics or dioptrics, the traditional subjects of reflection of light by mirrors of different shapes and the exploration of how light is "bent" as it passes from one medium, such as air, into another, such as water or glass. Rather, the Opticks is a study of the nature of light and colour and the various phenomena of diffraction, which Newton called the "inflexion" of light.


In this book Newton sets forth in full his experiments, first reported to the Royal Society of London in 1672,[2] on dispersion, or the separation of light into a spectrum of its component colours. He demonstrates how the appearance of color arises from selective absorption, reflection, or transmission of the various component parts of the incident light.


The major significance of Newton's work is that it overturned the dogma, attributed to Aristotle or Theophrastus and accepted by scholars in Newton's time, that "pure" light (such as the light attributed to the Sun) is fundamentally white or colourless, and is altered into color by mixture with darkness caused by interactions with matter. Newton showed just the opposite was true: light is composed of different spectral hues (he describes seven – red, orange, yellow, green, blue, indigo and violet), and all colours, including white, are formed by various mixtures of these hues. He demonstrates that color arises from a physical property of light – each hue is refracted at a characteristic angle by a prism or lens – but he clearly states that color is a sensation within the mind and not an inherent property of material objects or of light itself. For example, he demonstrates that a red violet (magenta) color can be mixed by overlapping the red and violet ends of two spectra, although this color does not appear in the spectrum and therefore is not a "color of light". By connecting the red and violet ends of the spectrum, he organised all colours as a color circle that both quantitatively predicts color mixtures and qualitatively describes the perceived similarity among hues.


Newton's contribution to prismatic dispersion was the first to outline multiple-prism arrays. Multiple-prism configurations, as beam expanders, became central to the design of the tunable laser more than 275 years later and set the stage for the development of the multiple-prism dispersion theory.[3][4]

Reception[edit]

The Opticks was widely read and debated in England and on the Continent. The early presentation of the work to the Royal Society stimulated a bitter dispute between Newton and Robert Hooke over the "corpuscular" or particle theory of light, which prompted Newton to postpone publication of the work until after Hooke's death in 1703. On the Continent, and in France in particular, both the Principia and the Opticks were initially rejected by many natural philosophers, who continued to defend Cartesian natural philosophy and the Aristotelian version of color, and claimed to find Newton's prism experiments difficult to replicate. Indeed, the Aristotelian theory of the fundamental nature of white light was defended into the 19th century, for example by the German writer Johann Wolfgang von Goethe in his 1810 Zur Farbenlehre (Theory of Colours).


Newtonian science became a central issue in the assault waged by the philosophes in the Age of Enlightenment against a natural philosophy based on the authority of ancient Greek or Roman naturalists or on deductive reasoning from first principles (the method advocated by French philosopher René Descartes), rather than on the application of mathematical reasoning to experience or experiment. Voltaire popularised Newtonian science, including the content of both the Principia and the Opticks, in his Elements de la philosophie de Newton (1738), and after about 1750 the combination of the experimental methods exemplified by the Opticks and the mathematical methods exemplified by the Principia were established as a unified and comprehensive model of Newtonian science. Some of the primary adepts in this new philosophy were such prominent figures as Benjamin Franklin, Antoine-Laurent Lavoisier, and James Black.


Subsequent to Newton, much has been amended. Thomas Young and Augustin-Jean Fresnel showed that the wave theory Christiaan Huygens described in his Treatise on Light (1690) could prove that colour is the visible manifestation of light's wavelength. Science also slowly came to recognize the difference between perception of colour and mathematisable optics. The German poet Goethe, with his epic diatribe Theory of Colours, could not shake the Newtonian foundation – but "one hole Goethe did find in Newton's armour.. Newton had committed himself to the doctrine that refraction without colour was impossible. He therefore thought that the object-glasses of telescopes must for ever remain imperfect, achromatism and refraction being incompatible. This inference was proved by Dollond to be wrong." (John Tyndall, 1880[5])

Color theory

Luminiferous aether

Prism (optics)

Theory of Colours

(Ibn al-Haytham)

Book of Optics

(Voltaire)

Elements of the Philosophy of Newton

Multiple-prism dispersion theory

Burnley, David The History of the English Language: A Source Book 2nd Edition, 2000, Pearson Education Limited.

Rarebookroom, First edition

ETH-Bibliothek, First edition

Gallica, First edition

Internet Archive, Fourth edition

Internet Archive, Dover reprint, Fourth edition

Project Gutenberg digitized text & images of the Fourth Edition

– Manuscript papers by Isaac Newton containing draft of Opticks

Cambridge University Digital Library, Papers on Hydrostatics, Optics, Sound and Heat

public domain audiobook at LibriVox

Opticks

Full and free online editions of Newton's Opticks