Katana VentraIP

Paradigm shift

A paradigm shift is a fundamental change in the basic concepts and experimental practices of a scientific discipline. It is a concept in the philosophy of science that was introduced and brought into the common lexicon by the American physicist and philosopher Thomas Kuhn. Even though Kuhn restricted the use of the term to the natural sciences, the concept of a paradigm shift has also been used in numerous non-scientific contexts to describe a profound change in a fundamental model or perception of events.

For other uses, see Paradigm Shift (disambiguation).

Kuhn presented his notion of a paradigm shift in his influential book The Structure of Scientific Revolutions (1962).


Kuhn contrasts paradigm shifts, which characterize a Scientific Revolution, to the activity of normal science, which he describes as scientific work done within a prevailing framework or paradigm. Paradigm shifts arise when the dominant paradigm under which normal science operates is rendered incompatible with new phenomena, facilitating the adoption of a new theory or paradigm.[1]


As one commentator summarizes:

Normal science – In this stage, which Kuhn sees as most prominent in science, a dominant paradigm is active. This paradigm is characterized by a set of and ideas that define what is possible and rational to do, giving scientists a clear set of tools to approach certain problems. Some examples of dominant paradigms that Kuhn gives are: Newtonian physics, caloric theory, and the theory of electromagnetism.[4] Insofar as paradigms are useful, they expand both the scope and the tools with which scientists do research. Kuhn stresses that, rather than being monolithic, the paradigms that define normal science can be particular to different people. A chemist and a physicist might operate with different paradigms of what a helium atom is.[5] Under normal science, scientists encounter anomalies that cannot be explained by the universally accepted paradigm within which scientific progress has thereto been made.

theories

Extraordinary research – When enough significant have accrued against a current paradigm, the scientific discipline is thrown into a state of crisis. To address the crisis, scientists push the boundaries of normal science in what Kuhn calls “extraordinary research”, which is characterized by its exploratory nature.[6] Without the structures of the dominant paradigm to depend on, scientists engaging in extraordinary research must produce new theories, thought experiments, and experiments to explain the anomalies. Kuhn sees the practice of this stage – “the proliferation of competing articulations, the willingness to try anything, the expression of explicit discontent, the recourse to philosophy and to debate over fundamentals” – as even more important to science than paradigm shifts.[7]

anomalies

Adoption of a new paradigm – Eventually a new paradigm is formed, which gains its own new followers. For Kuhn, this stage entails both resistance to the new paradigm, and reasons for why individual scientists adopt it. According to , "a new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it."[8] Because scientists are committed to the dominant paradigm, and paradigm shifts involve gestalt-like changes, Kuhn stresses that paradigms are difficult to change. However, paradigms can gain influence by explaining or predicting phenomena much better than before (i.e., Bohr's model of the atom) or by being more subjectively pleasing. During this phase, proponents for competing paradigms address what Kuhn considers the core of a paradigm debate: whether a given paradigm will be a good guide for future problems – things that neither the proposed paradigm nor the dominant paradigm are capable of solving currently.[9]

Max Planck

Aftermath of the scientific revolution – In the long run, the new paradigm becomes institutionalized as the dominant one. Textbooks are written, obscuring the revolutionary process.

Features[edit]

Paradigm shifts and progress[edit]

A common misinterpretation of paradigms is the belief that the discovery of paradigm shifts and the dynamic nature of science (with its many opportunities for subjective judgments by scientists) are a case for relativism:[10] the view that all kinds of belief systems are equal. Kuhn vehemently denies this interpretation[11] and states that when a scientific paradigm is replaced by a new one, albeit through a complex social process, the new one is always better, not just different.

Incommensurability[edit]

These claims of relativism are, however, tied to another claim that Kuhn does at least somewhat endorse: that the language and theories of different paradigms cannot be translated into one another or rationally evaluated against one another—that they are incommensurable. This gave rise to much talk of different peoples and cultures having radically different worldviews or conceptual schemes—so different that whether or not one was better, they could not be understood by one another. However, the philosopher Donald Davidson published the highly regarded essay "On the Very Idea of a Conceptual Scheme"[12] in 1974 arguing that the notion that any languages or theories could be incommensurable with one another was itself incoherent. If this is correct, Kuhn's claims must be taken in a weaker sense than they often are. Furthermore, the hold of the Kuhnian analysis on social science has long been tenuous, with the wide application of multi-paradigmatic approaches in order to understand complex human behaviour.[13]

Gradualism vs. sudden change[edit]

Paradigm shifts tend to be most dramatic in sciences that appear to be stable and mature, as in physics at the end of the 19th century. At that time, physics seemed to be a discipline filling in the last few details of a largely worked-out system.


In The Structure of Scientific Revolutions, Kuhn wrote, "Successive transition from one paradigm to another via revolution is the usual developmental pattern of mature science" (p. 12). Kuhn's idea was itself revolutionary in its time as it caused a major change in the way that academics talk about science. Thus, it could be argued that it caused or was itself part of a "paradigm shift" in the history and sociology of science. However, Kuhn would not recognise such a paradigm shift. In the social sciences, people can still use earlier ideas to discuss the history of science.


Philosophers and historians of science, including Kuhn himself, ultimately accepted a modified version of Kuhn's model, which synthesizes his original view with the gradualist model that preceded it.[14]

Examples[edit]

Natural sciences[edit]

Some of the "classical cases" of Kuhnian paradigm shifts in science are:

M. L. Handa, a professor of sociology in education at O.I.S.E. , Canada, developed the concept of a paradigm within the context of social sciences. He defines what he means by "paradigm" and introduces the idea of a "social paradigm". In addition, he identifies the basic component of any social paradigm. Like Kuhn, he addresses the issue of changing paradigms, the process popularly known as "paradigm shift". In this respect, he focuses on the social circumstances that precipitate such a shift. Relatedly, he addresses how that shift affects social institutions, including the institution of education.[31]

University of Toronto

The concept has been developed for technology and economics in the identification of new techno-economic paradigms as changes in technological systems that have a major influence on the behaviour of the entire economy (; earlier work only on technological paradigms by Giovanni Dosi). This concept is linked to Joseph Schumpeter's idea of creative destruction. Examples include the move to mass production and the introduction of microelectronics.[32]

Carlota Perez

Two photographs of the Earth from space, "" (1968) and "The Blue Marble" (1972), are thought to have helped to usher in the environmentalist movement, which gained great prominence in the years immediately following distribution of those images.[33][34]

Earthrise

applies Thomas Kuhn's theory of paradigm change to the entire history of Christian thought and theology. He identifies six historical "macromodels": 1) the apocalyptic paradigm of primitive Christianity, 2) the Hellenistic paradigm of the patristic period, 3) the medieval Roman Catholic paradigm, 4) the Protestant (Reformation) paradigm, 5) the modern Enlightenment paradigm, and 6) the emerging ecumenical paradigm. He also discusses five analogies between natural science and theology in relation to paradigm shifts. Küng addresses paradigm change in his books, Paradigm Change in Theology[35] and Theology for the Third Millennium: An Ecumenical View.[36]

Hans Küng

In the later part of the 1990s, 'paradigm shift' emerged as a , popularized as marketing speak and appearing more frequently in print and publication.[37] In his book Mind The Gaffe, author Larry Trask advises readers to refrain from using it, and to use caution when reading anything that contains the phrase. It is referred to in several articles and books[38][39] as abused and overused to the point of becoming meaningless.

buzzword

The concept of has been advanced, particularly by Giovanni Dosi.

technological paradigms

The term "paradigm shift" has found uses in other contexts, representing the notion of a major change in a certain thought pattern—a radical change in personal beliefs, complex systems or organizations, replacing the former way of thinking or organizing with a radically different way of thinking or organizing:

Criticism[edit]

In a 2015 retrospective on Kuhn,[40] the philosopher Martin Cohen describes the notion of the paradigm shift as a kind of intellectual virus – spreading from hard science to social science and on to the arts and even everyday political rhetoric today. Cohen claims that Kuhn had only a very hazy idea of what it might mean and, in line with the Austrian philosopher of science Paul Feyerabend, accuses Kuhn of retreating from the more radical implications of his theory, which are that scientific facts are never really more than opinions whose popularity is transitory and far from conclusive. Cohen says scientific knowledge is less certain than it is usually portrayed, and that science and knowledge generally is not the 'very sensible and reassuringly solid sort of affair' that Kuhn describes, in which progress involves periodic paradigm shifts in which much of the old certainties are abandoned in order to open up new approaches to understanding that scientists would never have considered valid before. He argues that information cascades can distort rational, scientific debate. He has focused on health issues, including the example of highly mediatised 'pandemic' alarms, and why they have turned out eventually to be little more than scares.[41]

(1970). The Structure of Scientific Revolutions (2nd, enlarged ed.). University of Chicago Press. ISBN 978-0-226-45804-5.

Kuhn, Thomas

The dictionary definition of paradigm shift at Wiktionary

. From MIT OpenCourseWare, course materials (graduate level) for a course on the history of technology through a Kuhnian lens.

MIT 6.933J – The Structure of Engineering Revolutions

. Internet Encyclopedia of Philosophy.

""Scientific Change""