Criticism[edit]
American public schools traditionally teach biology in the first year of high school, chemistry in the second, and physics in the third. The belief is that this order is more accessible, largely because biology can be taught with less mathematics, and will do the most toward providing some scientific literacy for the largest number of students.
In addition, many scientists and educators argue that freshmen do not have an adequate background in mathematics to be able to fully comprehend a complete physics curriculum, and that therefore quality of a physics education is lost. While physics requires knowledge of vectors and some basic trigonometry, many students in the Physics First program take the course in conjunction with geometry. They suggest that instead students first take biology and chemistry which are less mathematics-intensive so that by the time they are in their junior year, students will be advanced enough in mathematics with either an algebra 2 or pre-calculus education to be able to fully grasp the concepts presented in physics. Some argue this even further, saying that at least calculus should be a prerequisite for physics.
Others point out that, for example, secondary school students will never study the advanced physics that underlies chemistry in the first place. "[I]nclined planes (frictionless or not) didn't come up in ... high school chemistry class ... and the same can be said for some of the chemistry that really makes sense of biological phenomena."[4] For physics to be relevant to a chemistry course, students have to develop a truly fundamental understanding of the concepts of energy, force, and matter, beyond the context of specific applications like the inclined plane.