
Pocket watch
A pocket watch (or pocketwatch) is a watch that is made to be carried in a pocket, as opposed to a wristwatch, which is strapped to the wrist.
This article is about the portable timepiece. For the Dave Grohl album, see Pocketwatch (album). For the company, see PocketWatch (company).
They were the most common type of watch from their development in the 16th century until wristwatches became popular after World War I during which a transitional design, trench watches, were used by the military. Pocket watches generally have an attached chain to allow them to be secured to a waistcoat, lapel, or belt loop, and to prevent them from being dropped. Watches were also mounted on a short leather strap or fob, when a long chain would have been cumbersome or likely to catch on things. This fob could also provide a protective flap over their face and crystal. Women's watches were normally of this form, with a watch fob that was more decorative than protective. Chains were frequently decorated with a silver or enamel pendant, often carrying the arms of some club or society, which by association also became known as a fob. Ostensibly practical gadgets such as a watch winding key, vesta case, seal, and/or a cigar cutter also appeared on watch chains, although usually in an overly decorated style. Also common are fasteners designed to be put through a buttonhole and worn in a jacket or waistcoat, this sort being frequently associated with and named after train conductors.
An early reference to the pocket watch is in a letter in November 1462 from the Italian clockmaker Bartholomew Manfredi to the Marchese di Mantova Federico Gonzaga, where he offers him a "pocket clock" better than that belonging to the Duke of Modena. By the end of the 15th century, spring-driven clocks appeared in Italy, and in Germany. Peter Henlein, a master locksmith of Nuremberg, was regularly manufacturing pocket watches by 1526. Thereafter, pocket watch manufacture spread throughout the rest of Europe as the 16th century progressed. Early watches only had an hour hand, the minute hand appearing in the late 17th century.[1][2]
Pocket watch movements are occasionally engraved with the word "Adjusted", or "Adjusted to n positions". This means that the watch has been tuned to keep time under various positions and conditions. There are eight possible adjustments:
Positional adjustments are attained by careful poising (ensuring even weight distribution) of the balance-hairspring system as well as careful control of the shape and polish on the balance pivots. All of this achieves an equalization of the effect of gravity on the watch in various positions. Positional adjustments are achieved through careful adjustment of each of these factors, provided by repeated trials on a timing machine. Thus, adjusting a watch to position requires many hours of labor, increasing the cost of the watch. Medium grade watches were commonly adjusted to 3 positions (dial up, dial down, pendant up) while high grade watches were commonly adjusted to 5 positions (dial up, dial down, stem up, stem left, stem right) or even all 6 positions. Railroad watches were required, after 1908, to be adjusted to 5 positions. 3 positions were the general requirement before that time.
Early watches used a solid steel balance. As temperature increased, the solid balance expanded in size, changing the moment of inertia and changing the timing of the watch. In addition, the hairspring would lengthen, decreasing its spring constant. This problem was initially solved through the use of the compensation balance. The compensation balance consisted of a ring of steel sandwiched to a ring of brass. These rings were then split in two places. The balance would, at least theoretically, actually decrease in size with heating to compensate for the lengthening of the hairspring. Through careful adjustment of the placement of the balance screws (brass or gold screws placed in the rim of the balance), a watch could be adjusted to keep time the same at both hot (100 °F (38 °C)) and cold (32 °F (0 °C)) temperatures. Unfortunately, a watch so adjusted would run slow at temperatures between these two. The problem was completely solved through the use of special alloys for the balance and hairspring which were essentially immune to thermal expansion. Such an alloy is used in Hamilton's 992E and 992B.
Isochronism was occasionally improved through the use of a stopworks, a system designed to only allow the mainspring to operate within its center (most consistent) range. The most common method of achieving isochronism is through the use of the Breguet overcoil, which places part of the outermost turn of the hairspring in a different plane from the rest of the spring. This allows the hairspring to "breathe" more evenly and symmetrically. Two types of overcoils are found - the gradual overcoil and the Z-Bend. The gradual overcoil is obtained by imposing two gradual twists to the hairspring, forming the rise to the second plane over half the circumference; and the Z-bend does this by imposing two kinks of complementary 45 degree angles, accomplishing a rise to the second plane in about three spring section heights. The second method is done for esthetic reasons and is much more difficult to perform. Due to the difficulty with forming an overcoil, modern watches often use a slightly less effective "dogleg", which uses a series of sharp bends (in plane) to place part of the outermost coil out of the way of the rest of the spring.