Katana VentraIP

Quantum entanglement

Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.[1]

Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior gives rise to seemingly paradoxical effects: any measurement of a particle's properties results in an apparent and irreversible wave function collapse of that particle and changes the original quantum state. With entangled particles, such measurements affect the entangled system as a whole.


Such phenomena were the subject of a 1935 paper by Albert Einstein, Boris Podolsky, and Nathan Rosen,[2] and several papers by Erwin Schrödinger shortly thereafter,[3][4] describing what came to be known as the EPR paradox. Einstein and others considered such behavior impossible, as it violated the local realism view of causality (Einstein referring to it as "spooky action at a distance")[5] and argued that the accepted formulation of quantum mechanics must therefore be incomplete.


Later, however, the counterintuitive predictions of quantum mechanics were verified[6][7][8] in tests where polarization or spin of entangled particles were measured at separate locations, statistically violating Bell's inequality. In earlier tests, it could not be ruled out that the result at one point could have been subtly transmitted to the remote point, affecting the outcome at the second location.[8] However, so-called "loophole-free" Bell tests have since been performed where the locations were sufficiently separated that communications at the speed of light would have taken longer—in one case, 10,000 times longer—than the interval between the measurements.[7][6]


According to some interpretations of quantum mechanics, the effect of one measurement occurs instantly. Other interpretations which do not recognize wavefunction collapse dispute that there is any "effect" at all. However, all interpretations agree that entanglement produces correlation between the measurements, and that the mutual information between the entangled particles can be exploited, but that any transmission of information at faster-than-light speeds is impossible.[9][10] Thus, despite popular thought to the contrary, quantum entanglement cannot be used for faster-than-light communication.[11]


Quantum entanglement has been demonstrated experimentally with photons,[12][13] electrons,[14][15] top quarks,[16] molecules[17] and even small diamonds.[18] The use of entanglement in communication, computation and quantum radar is an active area of research and development.

Concept[edit]

Meaning of entanglement[edit]

An entangled system can be defined to be one whose quantum state cannot be factored as a product of states of its local constituents; that is to say, they are not individual particles but are an inseparable whole. In entanglement, one constituent cannot be fully described without considering the other(s). The state of a composite system is always expressible as a sum, or superposition, of products of states of local constituents; it is entangled if this sum cannot be written as a single product term.


Quantum systems can become entangled through various types of interactions. For some ways in which entanglement may be achieved for experimental purposes, see the section below on methods. Entanglement is broken when the entangled particles decohere through interaction with the environment; for example, when a measurement is made.[32]


As an example of entanglement: a subatomic particle decays into an entangled pair of other particles. The decay events obey the various conservation laws, and as a result, the measurement outcomes of one daughter particle must be highly correlated with the measurement outcomes of the other daughter particle (so that the total momenta, angular momenta, energy, and so forth remains roughly the same before and after this process). For instance, a spin-zero particle could decay into a pair of spin-1/2 particles. Since the total spin before and after this decay must be zero (conservation of angular momentum), whenever the first particle is measured to be spin up on some axis, the other, when measured on the same axis, is always found to be spin down. (This is called the spin anti-correlated case; and if the prior probabilities for measuring each spin are equal, the pair is said to be in the singlet state.)


The above result may or may not be perceived as surprising. A classical system would display the same property, and a hidden variable theory would certainly be required to do so, based on conservation of angular momentum in classical and quantum mechanics alike. The difference is that a classical system has definite values for all the observables all along, while the quantum system does not. In a sense to be discussed below, the quantum system considered here seems to acquire a probability distribution for the outcome of a measurement of the spin along any axis of the other particle upon measurement of the first particle. This probability distribution is in general different from what it would be without measurement of the first particle. This may certainly be perceived as surprising in the case of spatially separated entangled particles.

Paradox[edit]

The paradox is that a measurement made on either of the particles apparently collapses the state of the entire entangled system—and does so instantaneously, before any information about the measurement result could have been communicated to the other particle (assuming that information cannot travel faster than light) and hence assured the "proper" outcome of the measurement of the other part of the entangled pair. In the Copenhagen interpretation, the result of a spin measurement on one of the particles is a collapse (of wave function) into a state in which each particle has a definite spin (either up or down) along the axis of measurement. The outcome is taken to be random, with each possibility having a probability of 50%. However, if both spins are measured along the same axis, they are found to be anti-correlated. This means that the random outcome of the measurement made on one particle seems to have been transmitted to the other, so that it can make the "right choice" when it too is measured.[33]


The distance and timing of the measurements can be chosen so as to make the interval between the two measurements spacelike, hence, any causal effect connecting the events would have to travel faster than light. According to the principles of special relativity, it is not possible for any information to travel between two such measuring events. It is not even possible to say which of the measurements came first. For two spacelike separated events x1 and x2 there are inertial frames in which x1 is first and others in which x2 is first. Therefore, the correlation between the two measurements cannot be explained as one measurement determining the other: different observers would disagree about the role of cause and effect.


(In fact similar paradoxes can arise even without entanglement: the position of a single particle is spread out over space, and two widely separated detectors attempting to detect the particle in two different places must instantaneously attain appropriate correlation, so that they do not both detect the particle.)

Hidden variables theory[edit]

A possible resolution to the paradox is to assume that quantum theory is incomplete, and the result of measurements depends on predetermined "hidden variables".[34] The state of the particles being measured contains some hidden variables, whose values effectively determine, right from the moment of separation, what the outcomes of the spin measurements are going to be. This would mean that each particle carries all the required information with it, and nothing needs to be transmitted from one particle to the other at the time of measurement. Einstein and others (see the previous section) originally believed this was the only way out of the paradox, and the accepted quantum mechanical description (with a random measurement outcome) must be incomplete.

Violations of Bell's inequality[edit]

Local hidden variable theories fail, however, when measurements of the spin of entangled particles along different axes are considered. If a large number of pairs of such measurements are made (on a large number of pairs of entangled particles), then statistically, if the local realist or hidden variables view were correct, the results would always satisfy Bell's inequality. A number of experiments have shown in practice that Bell's inequality is not satisfied. However, prior to 2015, all of these experiments had loophole problems that were considered the most important by the community of physicists.[35][36] When measurements of the entangled particles are made in moving relativistic reference frames, in which each measurement (in its own relativistic time frame) occurs before the other, the measurement results remain correlated.[37][38]


The fundamental issue about measuring spin along different axes is that these measurements cannot have definite values at the same time―they are incompatible in the sense that these measurements' maximum simultaneous precision is constrained by the uncertainty principle. This is contrary to what is found in classical physics, where any number of properties can be measured simultaneously with arbitrary accuracy. It has been proven mathematically that compatible measurements cannot show Bell-inequality-violating correlations,[39] and thus entanglement is a fundamentally non-classical phenomenon.

Notable experimental results proving quantum entanglement[edit]

The first experiment that verified Einstein's spooky action at a distance (entanglement) was successfully corroborated in a lab by Chien-Shiung Wu and colleague I. Shaknov in 1949, and was published on New Year's Day in 1950. The result specifically proved the quantum correlations of a pair of photons.[40] In experiments in 2012 and 2013, polarization correlation was created between photons that never coexisted in time.[41][42] The authors claimed that this result was achieved by entanglement swapping between two pairs of entangled photons after measuring the polarization of one photon of the early pair, and that it proves that quantum non-locality applies not only to space but also to time.


In three independent experiments in 2013, it was shown that classically communicated separable quantum states can be used to carry entangled states.[43] The first loophole-free Bell test was held by Ronald Hanson of the Delft University of Technology in 2015, confirming the violation of Bell inequality.[44]


In August 2014, Brazilian researcher Gabriela Barreto Lemos and team were able to "take pictures" of objects using photons that had not interacted with the subjects, but were entangled with photons that did interact with such objects. Lemos, from the University of Vienna, is confident that this new quantum imaging technique could find application where low light imaging is imperative, in fields such as biological or medical imaging.[45]


Since 2016, various companies, for example IBM and Microsoft, have created quantum computers that allowed developers and tech enthusiasts to freely experiment with concepts of quantum mechanics including quantum entanglement.[46]

Emergence of time from quantum entanglement[edit]

There is a fundamental conflict, referred to as the problem of time, between the way the concept of time is used in quantum mechanics, and the role it plays in general relativity. In standard quantum theories time acts as an independent background through which states evolve, with the Hamiltonian operator acting as the generator of infinitesimal translations of quantum states through time.[47]


In contrast, general relativity treats time as a dynamical variable which relates directly with matter and moreover requires the Hamiltonian constraint to vanish. In quantized general relativity, the quantum version of the Hamiltonian constraint using metric variables, leads to the Wheeler–DeWitt equation:

Non-locality and entanglement[edit]

In the media and popular science, quantum non-locality is often portrayed as being equivalent to entanglement. While this is true for pure bipartite quantum states, in general entanglement is only necessary for non-local correlations, but there exist mixed entangled states that do not produce such correlations.[57] A well-known example is the Werner states that are entangled for certain values of , but can always be described using local hidden variables.[58] Moreover, it was shown that, for arbitrary numbers of particles, there exist states that are genuinely entangled but admit a local model.[59]


The mentioned proofs about the existence of local models assume that there is only one copy of the quantum state available at a time. If the particles are allowed to perform local measurements on many copies of such states, then many apparently local states (e.g., the qubit Werner states) can no longer be described by a local model. This is, in particular, true for all distillable states. However, it remains an open question whether all entangled states become non-local given sufficiently many copies.[60]


In short, entanglement of a state shared by two particles is necessary but not sufficient for that state to be non-local. It is important to recognize that entanglement is more commonly viewed as an algebraic concept, noted for being a prerequisite to non-locality as well as to quantum teleportation and to superdense coding, whereas non-locality is defined according to experimental statistics and is much more involved with the foundations and interpretations of quantum mechanics.[61]

If two states can be transformed into each other by a local unitary operation, they are said to be in the same LU class. This is the finest of the usually considered classes. Two states in the same LU class have the same value for entanglement measures and the same value as a resource in the distant-labs setting. There is an infinite number of different LU classes (even in the simplest case of two qubits in a pure state).[74]

[73]

If two states can be transformed into each other by local operations including measurements with probability larger than 0, they are said to be in the same 'SLOCC class' ("stochastic LOCC"). Qualitatively, two states and in the same SLOCC class are equally powerful (since I can transform one into the other and then do whatever it allows me to do), but since the transformations and may succeed with different probability, they are no longer equally valuable. E.g., for two pure qubits there are only two SLOCC classes: the entangled states (which contains both the (maximally entangled) Bell states and weakly entangled states like ) and the separable ones (i.e., product states like ).[76]

[75]

Instead of considering transformations of single copies of a state (like ) one can define classes based on the possibility of multi-copy transformations. E.g., there are examples when is impossible by LOCC, but is possible. A very important (and very coarse) classification is based on the property whether it is possible to transform an arbitrarily large number of copies of a state into at least one pure entangled state. States that have this property are called distillable. These states are the most useful quantum states since, given enough of them, they can be transformed (with local operations) into any entangled state and hence allow for all possible uses. It came initially as a surprise that not all entangled states are distillable, those that are not are called ''.[77][72]

bound entangled

Naturally entangled systems[edit]

The electron shells of multi-electron atoms always consist of entangled electrons. The correct ionization energy can be calculated only by consideration of electron entanglement.[119]

Explanatory video by Scientific American magazine

Entanglement experiment with photon pairs – interactive

Audio – Cain/Gay (2009) Entanglement

Astronomy Cast

Non-mathematical popular lecture on YouTube, posted Mar 2008

"Spooky Actions at a Distance?": Oppenheimer Lecture, Prof. David Mermin (Cornell University) Univ. California, Berkeley, 2008.

"Quantum Entanglement versus Classical Correlation" (Interactive demonstration)