Action at a distance
In physics, action at a distance is the concept that an object's motion can be affected by another object without being in physical contact with it; that is, the non-local interaction of objects that are separated in space. Coulomb's law and Newton's law of universal gravitation are based on action at a distance.
Not to be confused with Action (physics).Historically, action at a distance was the earliest scientific model for gravity and electricity and it continues to be useful in many practical cases. In the 19th and 20th centuries, field models arose to explain these phenomena with more precision. The discovery of electrons and of special relativity led to new action at a distance models providing alternative to field theories. Under our modern understanding, the four fundamental interactions (gravity, electromagnetism, the strong interaction and the weak interaction) in all of physics are not described by action at a distance.
Categories of action[edit]
In the study of mechanics, action at a distance is one of three fundamental actions on matter that cause motion. The other two are direct impact (elastic or inelastic collisions) and actions in a continuous medium as in fluid mechanics or solid mechanics.[1]: 338
Historically, physical explanations for particular phenomena have moved between these three categories over time as new models were developed.
Action-at-a-distance and actions in a continuous medium may be easily distinguished when the medium dynamics are visible, like waves in water or in an elastic solid. In the case of electricity or gravity, no medium is required. In the nineteenth century, criteria like the effect of actions on intervening matter, the observation of a time delay, the apparent storage of energy, or even the possibility of a plausible mechanical model for action transmission were all accepted as evidence against action at a distance.[2]: 198 Aether theories were alternative proposals to replace apparent action-at-a-distance in gravity and electromagnetism, in terms of continuous action inside an (invisible) medium called "aether".[1]: 338
Direct impact of macroscopic objects seems visually distinguishable from action at a distance. If however the objects are constructed of atoms, and the volume of those atoms is not defined and atoms interact by electric and magnetic forces, the distinction is less clear.[2]
Roles[edit]
The concept of action at a distance acts in multiple roles in physics and it can co-exist with other models according to the needs of each physical problem.
One role is as a summary of physical phenomena, independent of any understanding of the cause of such an action.[1] For example, astronomical tables of planetary positions can be compactly summarized using Newton's law of universal gravitation, which assumes the planets interact without contact or an intervening medium. As a summary of data, the concept does not need to be evaluated as a plausible physical model.
Action at a distance also acts as a model explaining physical phenomena even in the presence of other models. Again in the case of gravity, hypothesizing an instantaneous force between masses allows the return time of comets to be predicted as well as predicting the existence of previously unknown planets, like Neptune.[3]: 210 These triumphs of physics predated the alternative more accurate model for gravity based on general relativity by many decades.
Introductory physics textbooks discuss central forces, like gravity, by models based on action-at-distance without discussing the cause of such forces or issues with it until the topics of relativity and fields are discussed. For example, see The Feynman Lectures on Physics on gravity.[4]
"Spooky action at a distance"[edit]
Einstein wrote to Max Born about issues in quantum mechanics in 1947 and used a phrase translated as "spooky action at a distance". The phrase has been picked up and used as a description for the cause of small non-classical correlations between physically separated measurement of entangled quantum states. The correlations are predicted by quantum mechanics and verified by experiments. Rather than a postulate like Newton's gravitational force, this use of "action-at-a-distance" concerns observed correlations which are not easy to explain within simple interpretations of quantum mechanics.[25][26][27]