Separation axiom
In topology and related fields of mathematics, there are several restrictions that one often makes on the kinds of topological spaces that one wishes to consider. Some of these restrictions are given by the separation axioms. These are sometimes called Tychonoff separation axioms, after Andrey Tychonoff.
For the axiom of set theory, see Axiom schema of separation.
Separation axioms
in topological spaces
(Kolmogorov)
(Fréchet)
(Hausdorff)
(Urysohn)
(completely Hausdorff)
(regular Hausdorff)
(Tychonoff)
(normal Hausdorff)
(completely normal
Hausdorff)
(perfectly normal
Hausdorff)
The separation axioms are not fundamental axioms like those of set theory, but rather defining properties which may be specified to distinguish certain types of topological spaces. The separation axioms are denoted with the letter "T" after the German Trennungsaxiom ("separation axiom"), and increasing numerical subscripts denote stronger and stronger properties.
The precise definitions of the separation axioms have varied over time. Especially in older literature, different authors might have different definitions of each condition.
These definitions all use essentially the preliminary definitions above.
Many of these names have alternative meanings in some of mathematical literature; for example, the meanings of "normal" and "T4" are sometimes interchanged, similarly "regular" and "T3", etc. Many of the concepts also have several names; however, the one listed first is always least likely to be ambiguous.
Most of these axioms have alternative definitions with the same meaning; the definitions given here fall into a consistent pattern that relates the various notions of separation defined in the previous section. Other possible definitions can be found in the individual articles.
In all of the following definitions, X is again a topological space.
The following table summarizes the separation axioms as well as the implications between them: cells which are merged represent equivalent properties, each axiom implies the ones in the cells to its left, and if we assume the T1 axiom, then each axiom also implies the ones in the cells above it (for example, all normal T1 spaces are also completely regular).
There are some other conditions on topological spaces that are sometimes classified with the separation axioms, but these don't fit in with the usual separation axioms as completely. Other than their definitions, they aren't discussed here; see their individual articles.