Square (algebra)
In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power 2, and is denoted by a superscript 2; for instance, the square of 3 may be written as 32, which is the number 9. In some cases when superscripts are not available, as for instance in programming languages or plain text files, the notations x^2 (caret) or x**2 may be used in place of x2. The adjective which corresponds to squaring is quadratic.
"²" redirects here. For typography of superscripts, see subscript and superscript.
The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1)2 = x2 + 2x + 1.
One of the important properties of squaring, for numbers as well as in many other mathematical systems, is that (for all numbers x), the square of x is the same as the square of its additive inverse −x. That is, the square function satisfies the identity x2 = (−x)2. This can also be expressed by saying that the square function is an even function.
In geometry[edit]
There are several major uses of the square function in geometry.
The name of the square function shows its importance in the definition of the area: it comes from the fact that the area of a square with sides of length l is equal to l2. The area depends quadratically on the size: the area of a shape n times larger is n2 times greater. This holds for areas in three dimensions as well as in the plane: for instance, the surface area of a sphere is proportional to the square of its radius, a fact that is manifested physically by the inverse-square law describing how the strength of physical forces such as gravity varies according to distance.
The square function is related to distance through the Pythagorean theorem and its generalization, the parallelogram law. Euclidean distance is not a smooth function: the three-dimensional graph of distance from a fixed point forms a cone, with a non-smooth point at the tip of the cone. However, the square of the distance (denoted d2 or r2), which has a paraboloid as its graph, is a smooth and analytic function.
The dot product of a Euclidean vector with itself is equal to the square of its length: v⋅v = v2. This is further generalised to quadratic forms in linear spaces via the inner product. The inertia tensor in mechanics is an example of a quadratic form. It demonstrates a quadratic relation of the moment of inertia to the size (length).
There are infinitely many Pythagorean triples, sets of three positive integers such that the sum of the squares of the first two equals the square of the third. Each of these triples gives the integer sides of a right triangle.
Other uses[edit]
Squares are ubiquitous in algebra, more generally, in almost every branch of mathematics, and also in physics where many units are defined using squares and inverse squares: see below.
Least squares is the standard method used with overdetermined systems.
Squaring is used in statistics and probability theory in determining the standard deviation of a set of values, or a random variable. The deviation of each value xi from the mean of the set is defined as the difference . These deviations are squared, then a mean is taken of the new set of numbers (each of which is positive). This mean is the variance, and its square root is the standard deviation.