Katana VentraIP

Taxonomic rank

In biology, taxonomic rank is the relative level of a group of organisms (a taxon) in an ancestral or hereditary hierarchy. A common system of biological classification (taxonomy) consists of species, genus, family, order, class, phylum, kingdom, and domain. While older approaches to taxonomic classification were phenomenological, forming groups on the basis of similarities in appearance, organic structure and behaviour, methods based on genetic analysis have opened the road to cladistics.

A given rank subsumes less general categories under it, that is, more specific descriptions of life forms. Above it, each rank is classified within more general categories of organisms and groups of organisms related to each other through inheritance of traits or features from common ancestors. The rank of any species and the description of its genus is basic; which means that to identify a particular organism, it is usually not necessary to specify ranks other than these first two.[1]


Consider a particular species, the red fox, Vulpes vulpes: the specific name or specific epithet vulpes (small v) identifies a particular species in the genus Vulpes (capital V) which comprises all the "true" foxes. Their close relatives are all in the family Canidae, which includes dogs, wolves, jackals, and all foxes; the next higher major rank, the order Carnivora, includes caniforms (bears, seals, weasels, skunks, raccoons and all those mentioned above), and feliforms (cats, civets, hyenas, mongooses). Carnivorans are one group of the hairy, warm-blooded, nursing members of the class Mammalia, which are classified among animals with notochords in the phylum Chordata, and with them among all animals in the kingdom Animalia. Finally, at the highest rank all of these are grouped together with all other organisms possessing cell nuclei in the domain Eukarya.


The International Code of Zoological Nomenclature defines rank as: "The level, for nomenclatural purposes, of a taxon in a taxonomic hierarchy (e.g. all families are for nomenclatural purposes at the same rank, which lies between superfamily and subfamily)."[2]

Family

Genus

Species

If names were "intended as names of orders, but published with their rank denoted by a term such as": "cohors" [Latin for "cohort"; see also cohort study for the use of the term in ecology], "nixus", "alliance", or "Reihe" instead of "order" (Article 17.2), they are treated as names of orders.

[10]

"Family" is substituted for "order" (ordo) or "natural order" (ordo naturalis) under certain conditions where the modern meaning of "order" was not intended. (Article 18.2)

"Subfamily is substituted for "suborder" (subordo) under certain conditions where the modern meaning of "suborder" was not intended. (Article 19.2)

In a publication prior to 1 January 1890, if only one infraspecific rank is used, it is considered to be that of variety. (Article 37.4) This commonly applies to publications that labelled infraspecific taxa with Greek letters, α, β, γ, ...

In order to keep the table compact and avoid disputed technicalities, some common and uncommon intermediate ranks are omitted. For example, the of Europe, Africa, and upper North America[a] are in class Mammalia, legion Cladotheria, sublegion Zatheria, infralegion Tribosphenida, subclass Theria, clade Eutheria, clade Placentalia – but only Mammalia and Theria are in the table. Legitimate arguments might arise if the commonly used clades Eutheria and Placentalia were both included, over which is the rank "infraclass" and what the other's rank should be, or whether the two names are synonyms.

mammals

The ranks of higher taxa, especially intermediate ranks, are prone to revision as new information about relationships is discovered. For example, the have been downgraded from a division (Magnoliophyta) to a subclass (Magnoliidae), and the superorder has become the rank that distinguishes the major groups of flowering plants.[12] The traditional classification of primates (class Mammalia, subclass Theria, infraclass Eutheria, order Primates) has been modified by new classifications such as McKenna and Bell (class Mammalia, subclass Theriformes, infraclass Holotheria) with Theria and Eutheria assigned lower ranks between infraclass and the order Primates. (See mammal classification for details.) These differences arise because there are few available ranks and many branching points in the fossil record.

flowering plants

Within species further units may be recognised. Animals may be classified into subspecies (for example, Homo sapiens sapiens, modern humans) or (for example Corvus corax varius morpha leucophaeus, the pied raven). Plants may be classified into subspecies (for example, Pisum sativum subsp. sativum, the garden pea) or varieties (for example, Pisum sativum var. macrocarpon, snow pea), with cultivated plants getting a cultivar name (for example, Pisum sativum var. macrocarpon 'Snowbird'). Bacteria may be classified by strains (for example Escherichia coli O157:H7, a strain that can cause food poisoning).

morphs

Classifications of five species follow: the fruit fly familiar in genetics laboratories (Drosophila melanogaster), humans (Homo sapiens), the peas used by Gregor Mendel in his discovery of genetics (Pisum sativum), the "fly agaric" mushroom Amanita muscaria, and the bacterium Escherichia coli. The eight major ranks are given in bold; a selection of minor ranks are given as well.

In botany and mycology names at the rank of family and below are based on the name of a genus, sometimes called the of that taxon, with a standard ending. For example, the rose family, Rosaceae, is named after the genus Rosa, with the standard ending "-aceae" for a family. Names above the rank of family are also formed from a generic name, or are descriptive (like Gymnospermae or Fungi).

type genus

For animals, there are standard suffixes for taxa only up to the rank of superfamily. Uniform suffix has been suggested (but not recommended) in AAAS[20] as -ida /ɪdə/ for orders, for example; protozoologists seem to adopt this system. Many metazoan (higher animals) orders also have such suffix, e.g. Hyolithida and Nectaspida (Naraoiida).

[19]

Forming a name based on a generic name may be not straightforward. For example, the homo has the genitive hominis, thus the genus Homo (human) is in the , not "Homidae".

Hominidae

The ranks of epifamily, infrafamily and infratribe (in animals) are used where the complexities of phyletic branching require finer-than-usual distinctions. Although they fall below the rank of superfamily, they are not regulated under the International Code of Zoological Nomenclature and hence do not have formal standard endings. The suffixes listed here are regular, but informal.

[21]

In virology, the formal endings for taxa of , of satellite nucleic acids, and of viriforms are similar to viruses, only -vir- is replaced by -viroid-, -satellit- and -viriform-.[14] The extra levels of realm and subrealm end with -viria and -vira respectively.[14]

viroids

Taxa above the genus level are often given names based on the type genus, with a standard termination. The terminations used in forming these names depend on the kingdom (and sometimes the phylum and class) as set out in the table below.


Pronunciations given are the most Anglicized. More Latinate pronunciations are also common, particularly /ɑː/ rather than // for stressed a.

Superdomain

Domain

Realm

[14]

Hyperkingdom

Superkingdom

Superphylum

Phylum

Superclass

Class

[23]

Legion

[24]

[25]

Family

Tribe

Supergenus

Genus

Species complex

Species

There is an indeterminate number of ranks, as a taxonomist may invent a new rank at will, at any time, if they feel this is necessary. In doing so, there are some restrictions, which will vary with the nomenclature code that applies.


The following is an artificial synthesis, solely for purposes of demonstration of relative rank (but see notes), from most general to most specific:[22]

Significance and problems[edit]

Ranks are assigned based on subjective dissimilarity, and do not fully reflect the gradational nature of variation within nature. In most cases, higher taxonomic groupings arise further back in time: not because the rate of diversification was higher in the past, but because each subsequent diversification event results in an increase of diversity and thus increases the taxonomic rank assigned by present-day taxonomists.[27] Furthermore, some groups have many described species not because they are more diverse than other species, but because they are more easily sampled and studied than other groups.


Of these many ranks, the most basic is species. However, this is not to say that a taxon at any other rank may not be sharply defined, or that any species is guaranteed to be sharply defined. It varies from case to case. Ideally, a taxon is intended to represent a clade, that is, the phylogeny of the organisms under discussion, but this is not a requirement.


A classification in which all taxa have formal ranks cannot adequately reflect knowledge about phylogeny. Since taxon names are dependent on ranks in traditional Linnaean systems of classification, taxa without ranks cannot be given names. Alternative approaches, such as using circumscriptional names, avoid this problem.[28][29] The theoretical difficulty with superimposing taxonomic ranks over evolutionary trees is manifested as the boundary paradox which may be illustrated by Darwinian evolutionary models.


There are no rules for how many species should make a genus, a family, or any other higher taxon (that is, a taxon in a category above the species level).[30][31] It should be a natural group (that is, non-artificial, non-polyphyletic), as judged by a biologist, using all the information available to them. Equally ranked higher taxa in different phyla are not necessarily equivalent (e.g., it is incorrect to assume that families of insects are in some way evolutionarily comparable to families of mollusks).[31] For animals, at least the phylum rank is usually associated with a certain body plan, which is also, however, an arbitrary criterion.

Mnemonic[edit]

There are several acronyms intended to help memorise the taxonomic hierarchy, such as "King Phillip came over for great spaghetti".[32] (See taxonomy mnemonic.)

Breed

(a database)

Catalogue of Life

Cladistics

Landrace

Tree of life (biology)

Alliance (taxonomy)