
Titan (moon)
Titan is the largest moon of Saturn and the second-largest in the Solar System. It is the only moon known to have an atmosphere denser than the Earth's, and is the only known object in space other than Earth on which clear evidence of stable bodies of surface liquid has been found.[16] Titan is one of the seven gravitationally rounded moons of Saturn and the second-most distant among them. Frequently described as a planet-like moon, Titan is 50% larger (in diameter) than Earth's Moon and 80% more massive. It is the second-largest moon in the Solar System after Jupiter's moon Ganymede, and is larger than Mercury, but only 40% as massive due to Mercury being made of mostly dense iron and rock, while a large portion of Titan is made of less-dense ice.
Not to be confused with Titania (moon) or Triton (moon).Discovery
March 25, 1655
Saturn VI
Τῑτάν Tītan
Titanian[2] or Titanean[3] (both /taɪˈteɪniən/)[4][5]
1186680 km
1257060 km
1221870 km
0.0288
15.945 d
5.57 km/s (calculated)
0.34854° (to Saturn's equator)
8.3×107 km2 (0.163 Earths)
7.16×1010 km3 (0.066 Earths)
(1.3452±0.0002)×1023 kg
(0.0225 Earth's)[8]
1.8798±0.0044 g/cm3[8]
1.352 m/s2 (0.138 g)
0.3414±0.0005[9] (estimate)
2.641 km/s
Zero (to the orbital plane);
27° (to the sun)
93.7 K (−179.5 °C)[12]
8.2[13] to 9.0
Variable
Stratosphere:
98.4% nitrogen (N
2),
1.4% methane (CH
4),
0.2% hydrogen (H
2);
95.0% N
2, 4.9% CH
4;[14]
97% N
2, 2.7±0.1% CH
4, 0.1–0.2% H
2[15]
Discovered in 1655 by the Dutch astronomer Christiaan Huygens, Titan was the first known moon of Saturn, and the sixth known planetary satellite (after Earth's moon and the four Galilean moons of Jupiter). Titan orbits Saturn at 20 Saturn radii, or 1,200,000 km above Saturn's apparent surface. From Titan's surface, Saturn subtends an arc of 5.09 degrees, and if it were visible through the moon's thick atmosphere, it would appear 11.4 times larger in the sky, in diameter, than the Moon from Earth, which subtends 0.48° of arc.
Titan is primarily composed of ice and rocky material, which is likely differentiated into a rocky core surrounded by various layers of ice, including a crust of ice Ih and a subsurface layer of ammonia-rich liquid water.[17] Much as with Venus before the Space Age, the dense opaque atmosphere prevented understanding of Titan's surface until the Cassini–Huygens mission in 2004 provided new information, including the discovery of liquid hydrocarbon lakes in Titan's polar regions and the discovery of its atmospheric super-rotation. The geologically young surface is generally smooth, with few impact craters, although mountains and several possible cryovolcanoes have been found.
The atmosphere of Titan is largely nitrogen; minor components lead to the formation of methane and ethane clouds and heavy organonitrogen haze. The climate—including wind and rain—creates surface features similar to those of Earth, such as dunes, rivers, lakes, seas (probably of liquid methane and ethane), and deltas, and is dominated by seasonal weather patterns as on Earth. With its liquids (both surface and subsurface) and robust nitrogen atmosphere, Titan's methane cycle bears a striking similarity to Earth's water cycle, albeit at the much lower temperature of about 94 K (−179 °C; −290 °F). Due to these factors, Titan has been described as the most Earth-like celestial object in the Solar System.[18]
Formation[edit]
The regular moons of Jupiter and Saturn are thought to have formed through co-accretion, a similar process to that believed to have formed the planets in the Solar System. As the young gas giants formed, they were surrounded by discs of material that gradually coalesced into moons. Whereas Jupiter possesses four large satellites in highly regular, planet-like orbits, Titan overwhelmingly dominates Saturn's system and possesses a high orbital eccentricity not immediately explained by co-accretion alone. A proposed model for the formation of Titan is that Saturn's system began with a group of moons similar to Jupiter's Galilean satellites, but that they were disrupted by a series of giant impacts, which would go on to form Titan. Saturn's mid-sized moons, such as Iapetus and Rhea, were formed from the debris of these collisions. Such a violent beginning would also explain Titan's orbital eccentricity.[43]
A 2014 analysis of Titan's atmospheric nitrogen suggested that it was possibly sourced from material similar to that found in the Oort cloud and not from sources present during the co-accretion of materials around Saturn.[44]