Transcendental number theory
Transcendental number theory is a branch of number theory that investigates transcendental numbers (numbers that are not solutions of any polynomial equation with rational coefficients), in both qualitative and quantitative ways.
History[edit]
Approximation by rational numbers: Liouville to Roth[edit]
Use of the term transcendental to refer to an object that is not algebraic dates back to the seventeenth century, when Gottfried Leibniz proved that the sine function was not an algebraic function.[1] The question of whether certain classes of numbers could be transcendental dates back to 1748[2] when Euler asserted[3] that the number logab was not algebraic for rational numbers a and b provided b is not of the form b = ac for some rational c.
Euler's assertion was not proved until the twentieth century, but almost a hundred years after his claim Joseph Liouville did manage to prove the existence of numbers that are not algebraic, something that until then had not been known for sure.[4] His original papers on the matter in the 1840s sketched out arguments using continued fractions to construct transcendental numbers. Later, in the 1850s, he gave a necessary condition for a number to be algebraic, and thus a sufficient condition for a number to be transcendental.[5] This transcendence criterion was not strong enough to be necessary too, and indeed it fails to detect that the number e is transcendental. But his work did provide a larger class of transcendental numbers, now known as Liouville numbers in his honour.
Liouville's criterion essentially said that algebraic numbers cannot be very well approximated by rational numbers. So if a number can be very well approximated by rational numbers then it must be transcendental. The exact meaning of "very well approximated" in Liouville's work relates to a certain exponent. He showed that if α is an algebraic number of degree d ≥ 2 and ε is any number greater than zero, then the expression
Major results[edit]
The Gelfond–Schneider theorem was the major advance in transcendence theory in the period 1900–1950. In the 1960s the method of Alan Baker on linear forms in logarithms of algebraic numbers reanimated transcendence theory, with applications to numerous classical problems and diophantine equations.
Open problems[edit]
While the Gelfond–Schneider theorem proved that a large class of numbers was transcendental, this class was still countable. Many well-known mathematical constants are still not known to be transcendental, and in some cases it is not even known whether they are rational or irrational. A partial list can be found here.
A major problem in transcendence theory is showing that a particular set of numbers is algebraically independent rather than just showing that individual elements are transcendental. So while we know that e and π are transcendental that doesn't imply that e + π is transcendental, nor other combinations of the two (except eπ, Gelfond's constant, which is known to be transcendental). Another major problem is dealing with numbers that are not related to the exponential function. The main results in transcendence theory tend to revolve around e and the logarithm function, which means that wholly new methods tend to be required to deal with numbers that cannot be expressed in terms of these two objects in an elementary fashion.
Schanuel's conjecture would solve the first of these problems somewhat as it deals with algebraic independence and would indeed confirm that e + π is transcendental. It still revolves around the exponential function, however, and so would not necessarily deal with numbers such as Apéry's constant or the Euler–Mascheroni constant. Another extremely difficult unsolved problem is the so-called constant or identity problem.[35]