History[edit]
Ernst Kummer invented the concept of ideal numbers to serve as the "missing" factors in number rings in which unique factorization fails; here the word "ideal" is in the sense of existing in imagination only, in analogy with "ideal" objects in geometry such as points at infinity.[1] In 1876, Richard Dedekind replaced Kummer's undefined concept by concrete sets of numbers, sets that he called ideals, in the third edition of Dirichlet's book Vorlesungen über Zahlentheorie, to which Dedekind had added many supplements.[1][2][3] Later the notion was extended beyond number rings to the setting of polynomial rings and other commutative rings by David Hilbert and especially Emmy Noether.
(For the sake of brevity, some results are stated only for left ideals but are usually also true for right ideals with appropriate notation changes.)
To simplify the description all rings are assumed to be commutative. The non-commutative case is discussed in detail in the respective articles.
Ideals are important because they appear as kernels of ring homomorphisms and allow one to define factor rings. Different types of ideals are studied because they can be used to construct different types of factor rings.
Two other important terms using "ideal" are not always ideals of their ring. See their respective articles for details:
The sum and product of ideals are defined as follows. For and , left (resp. right) ideals of a ring R, their sum is
which is a left (resp. right) ideal,
and, if are two-sided,
i.e. the product is the ideal generated by all products of the form ab with a in and b in .
Note is the smallest left (resp. right) ideal containing both and (or the union ), while the product is contained in the intersection of and .
The distributive law holds for two-sided ideals ,
If a product is replaced by an intersection, a partial distributive law holds:
where the equality holds if contains or .
Remark: The sum and the intersection of ideals is again an ideal; with these two operations as join and meet, the set of all ideals of a given ring forms a complete modular lattice. The lattice is not, in general, a distributive lattice. The three operations of intersection, sum (or join), and product make the set of ideals of a commutative ring into a quantale.
If are ideals of a commutative ring R, then in the following two cases (at least)
(More generally, the difference between a product and an intersection of ideals is measured by the Tor functor: .[11])
An integral domain is called a Dedekind domain if for each pair of ideals , there is an ideal such that .[12] It can then be shown that every nonzero ideal of a Dedekind domain can be uniquely written as a product of maximal ideals, a generalization of the fundamental theorem of arithmetic.
In we have
since is the set of integers that are divisible by both and .
Let and let . Then,
In the first computation, we see the general pattern for taking the sum of two finitely generated ideals, it is the ideal generated by the union of their generators. In the last three we observe that products and intersections agree whenever the two ideals intersect in the zero ideal. These computations can be checked using Macaulay2.[13][14][15]
Let A and B be two commutative rings, and let f : A → B be a ring homomorphism. If is an ideal in A, then need not be an ideal in B (e.g. take f to be the inclusion of the ring of integers Z into the field of rationals Q). The extension of in B is defined to be the ideal in B generated by . Explicitly,
If is an ideal of B, then is always an ideal of A, called the contraction of to A.
Assuming f : A → B is a ring homomorphism, is an ideal in A, is an ideal in B, then:
It is false, in general, that being prime (or maximal) in A implies that is prime (or maximal) in B. Many classic examples of this stem from algebraic number theory. For example, embedding . In , the element 2 factors as where (one can show) neither of are units in B. So is not prime in B (and therefore not maximal, as well). Indeed, shows that , , and therefore .
On the other hand, if f is surjective and then:
Remark: Let K be a field extension of L, and let B and A be the rings of integers of K and L, respectively. Then B is an integral extension of A, and we let f be the inclusion map from A to B. The behaviour of a prime ideal of A under extension is one of the central problems of algebraic number theory.
The following is sometimes useful:[16] a prime ideal is a contraction of a prime ideal if and only if . (Proof: Assuming the latter, note intersects , a contradiction. Now, the prime ideals of correspond to those in B that are disjoint from . Hence, there is a prime ideal of B, disjoint from , such that is a maximal ideal containing . One then checks that lies over . The converse is obvious.)