Katana VentraIP

Ultraviolet

Ultraviolet (UV) light is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs, Cherenkov radiation, and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights.

For other uses, see Ultraviolet (disambiguation). "UV" redirects here. For other uses, see UV (disambiguation).

The photons of ultraviolet have greater energy than those of visible light, from about 3.1 to 12 electron volts, around the minimum energy required to ionize atoms. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack sufficient energy, it can induce chemical reactions and cause many substances to glow or fluoresce. Many practical applications, including chemical and biological effects, are derived from the way that UV radiation can interact with organic molecules. These interactions can involve absorption or adjusting energy states in molecules, but do not necessarily involve heating. Short-wave ultraviolet light is ionizing radiation. Consequently, short-wave UV damages DNA and sterilizes surfaces with which it comes into contact.


For humans, suntan and sunburn are familiar effects of exposure of the skin to UV light, along with an increased risk of skin cancer. The amount of UV light produced by the Sun means that the Earth would not be able to sustain life on dry land if most of that light were not filtered out by the atmosphere.[1] More energetic, shorter-wavelength "extreme" UV below 121 nm ionizes air so strongly that it is absorbed before it reaches the ground.[2] However, ultraviolet light (specifically, UVB) is also responsible for the formation of vitamin D in most land vertebrates, including humans.[3] The UV spectrum, thus, has effects both beneficial and detrimental to life.


The lower wavelength limit of the visible spectrum is conventionally taken as 400 nm, so ultraviolet rays are not visible to humans, although people can sometimes perceive light at shorter wavelengths than this.[4] Insects, birds, and some mammals can see near-UV (NUV), i.e., slightly shorter wavelengths than what humans can see.[5]

History and discovery[edit]

"Ultraviolet" means "beyond violet" (from Latin ultra, "beyond"), violet being the color of the highest frequencies of visible light. Ultraviolet has a higher frequency (thus a shorter wavelength) than violet light.


UV radiation was discovered in 1801 when the German physicist Johann Wilhelm Ritter observed that invisible rays just beyond the violet end of the visible spectrum darkened silver chloride-soaked paper more quickly than violet light itself. He called them "(de-)oxidizing rays" (German: de-oxidierende Strahlen) to emphasize chemical reactivity and to distinguish them from "heat rays", discovered the previous year at the other end of the visible spectrum. The simpler term "chemical rays" was adopted soon afterwards, and remained popular throughout the 19th century, although some said that this radiation was entirely different from light (notably John William Draper, who named them "tithonic rays"[11][12]). The terms "chemical rays" and "heat rays" were eventually dropped in favor of ultraviolet and infrared radiation, respectively.[13][14] In 1878, the sterilizing effect of short-wavelength light by killing bacteria was discovered. By 1903, the most effective wavelengths were known to be around 250 nm. In 1960, the effect of ultraviolet radiation on DNA was established.[15]


The discovery of the ultraviolet radiation with wavelengths below 200 nm, named "vacuum ultraviolet" because it is strongly absorbed by the oxygen in air, was made in 1893 by German physicist Victor Schumann.[16]

Blockers, absorbers, and windows[edit]

Ultraviolet absorbers are molecules used in organic materials (polymers, paints, etc.) to absorb UV radiation to reduce the UV degradation (photo-oxidation) of a material. The absorbers can themselves degrade over time, so monitoring of absorber levels in weathered materials is necessary.


In sunscreen, ingredients that absorb UVA/UVB rays, such as avobenzone, oxybenzone[27] and octyl methoxycinnamate, are organic chemical absorbers or "blockers". They are contrasted with inorganic absorbers/"blockers" of UV radiation such as carbon black, titanium dioxide, and zinc oxide.


For clothing, the ultraviolet protection factor (UPF) represents the ratio of sunburn-causing UV without and with the protection of the fabric, similar to sun protection factor (SPF) ratings for sunscreen. Standard summer fabrics have UPFs around 6, which means that about 20% of UV will pass through.


Suspended nanoparticles in stained-glass prevent UV rays from causing chemical reactions that change image colors. A set of stained-glass color-reference chips is planned to be used to calibrate the color cameras for the 2019 ESA Mars rover mission, since they will remain unfaded by the high level of UV present at the surface of Mars.


Common soda–lime glass, such as window glass, is partially transparent to UVA, but is opaque to shorter wavelengths, passing about 90% of the light above 350 nm, but blocking over 90% of the light below 300 nm.[28][29][30] A study found that car windows allow 3–4% of ambient UV to pass through, especially if the UV was greater than 380 nm.[31] Other types of car windows can reduce transmission of UV that is greater than 335 nm.[31] Fused quartz, depending on quality, can be transparent even to vacuum UV wavelengths. Crystalline quartz and some crystals such as CaF2 and MgF2 transmit well down to 150 nm or 160 nm wavelengths.[32]


Wood's glass is a deep violet-blue barium-sodium silicate glass with about 9% nickel oxide developed during World War I to block visible light for covert communications. It allows both infrared daylight and ultraviolet night-time communications by being transparent between 320 nm and 400 nm and also the longer infrared and just-barely-visible red wavelengths. Its maximum UV transmission is at 365 nm, one of the wavelengths of mercury lamps.

13.5 nm:

Extreme ultraviolet lithography

30–200 nm: , ultraviolet photoelectron spectroscopy, standard integrated circuit manufacture by photolithography

Photoionization

230–365 nm: UV-ID, label tracking,

barcodes

230–400 nm: Optical , various instrumentation

sensors

240–280 nm: , decontamination of surfaces and water (DNA absorption has a peak at 260 nm), germicidal lamps[38]

Disinfection

200–400 nm: , drug detection

Forensic analysis

270–360 nm: analysis, DNA sequencing, drug discovery

Protein

280–400 nm: of cells

Medical imaging

300–320 nm: in medicine

Light therapy

300–365 nm: of polymers and printer inks

Curing

350–370 nm: (flies are most attracted to light at 365 nm)[85]

Bug zappers

Evolutionary significance[edit]

The evolution of early reproductive proteins and enzymes is attributed in modern models of evolutionary theory to ultraviolet radiation. UVB causes thymine base pairs next to each other in genetic sequences to bond together into thymine dimers, a disruption in the strand that reproductive enzymes cannot copy. This leads to frameshifting during genetic replication and protein synthesis, usually killing the cell. Before formation of the UV-blocking ozone layer, when early prokaryotes approached the surface of the ocean, they almost invariably died out. The few that survived had developed enzymes that monitored the genetic material and removed thymine dimers by nucleotide excision repair enzymes. Many enzymes and proteins involved in modern mitosis and meiosis are similar to repair enzymes, and are believed to be evolved modifications of the enzymes originally used to overcome DNA damages caused by UV.[119]

Allen, Jeannie (6 September 2001). . Earth Observatory. NASA, USA.

Ultraviolet Radiation: How it Affects Life on Earth

Hockberger, Philip E. (2002). "A History of Ultraviolet Photobiology for Humans, Animals and Microorganisms". Photochemistry and Photobiology. 76 (6): 561–569. :10.1562/0031-8655(2002)0760561AHOUPF2.0.CO2. PMID 12511035. S2CID 222100404.

doi

Hu, S; Ma, F; Collado-Mesa, F; Kirsner, R. S. (July 2004). . Arch. Dermatol. 140 (7): 819–824. doi:10.1001/archderm.140.7.819. PMID 15262692.

"UV radiation, latitude, and melanoma in US Hispanics and blacks"

Strauss, CEM; Funk, DJ (1991). "Broadly tunable difference-frequency generation of VUV using two-photon resonances in H2 and Kr". Optics Letters. 16 (15): 1192–4. :1991OptL...16.1192S. doi:10.1364/ol.16.001192. PMID 19776917.

Bibcode

Media related to Ultraviolet light at Wikimedia Commons

The dictionary definition of ultraviolet at Wiktionary