Watt
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3.[1][2][3] It is used to quantify the rate of energy transfer. The watt is named in honor of James Watt (1736–1819), an 18th-century Scottish inventor, mechanical engineer, and chemist who improved the Newcomen engine with his own steam engine in 1776. Watt's invention was fundamental for the Industrial Revolution.
This article is about the unit of power. For other uses, see Watt (disambiguation).Origin and adoption as an SI unit[edit]
The watt is named after the Scottish inventor James Watt.[5] The unit name was proposed by C. William Siemens in August 1882 in his President's Address to the Fifty-Second Congress of the British Association for the Advancement of Science.[6] Noting that units in the practical system of units were named after leading physicists, Siemens proposed that watt might be an appropriate name for a unit of power.[7] Siemens defined the unit within the existing system of practical units as "the power conveyed by a current of an Ampère through the difference of potential of a Volt".[8]
In October 1908, at the International Conference on Electric Units and Standards in London,[9] so-called international definitions were established for practical electrical units.[10] Siemens' definition was adopted as the international watt. (Also used: 1 A2 × 1 Ω.)[5] The watt was defined as equal to 107 units of power in the practical system of units.[10] The "international units" were dominant from 1909 until 1948. After the 9th General Conference on Weights and Measures in 1948, the international watt was redefined from practical units to absolute units (i.e., using only length, mass, and time). Concretely, this meant that 1 watt was defined as the quantity of energy transferred in a unit of time, namely 1 J/s. In this new definition, 1 absolute watt = 1.00019 international watts. Texts written before 1948 are likely to be using the international watt, which implies caution when comparing numerical values from this period with the post-1948 watt.[5] In 1960, the 11th General Conference on Weights and Measures adopted the absolute watt into the International System of Units (SI) as the unit of power.[11]
Conventions in the electric power industry[edit]
In the electric power industry, megawatt electrical (MWe[30] or MWe)[31] refers by convention to the electric power produced by a generator, while megawatt thermal or thermal megawatt[32] (MWt, MWt, or MWth, MWth) refers to thermal power produced by the plant. For example, the Embalse nuclear power plant in Argentina uses a fission reactor to generate 2,109 MWt (i.e. heat), which creates steam to drive a turbine, which generates 648 MWe (i.e. electricity). Other SI prefixes are sometimes used, for example gigawatt electrical (GWe). The International Bureau of Weights and Measures, which maintains the SI-standard, states that further information about a quantity should not be attached to the unit symbol but instead to the quantity symbol (e.g., Pth = 270 W rather than P = 270 Wth) and so these unit symbols are non-SI.[33] In compliance with SI, the energy company Ørsted A/S uses the unit megawatt for produced electrical power and the equivalent unit megajoule per second for delivered heating power in a combined heat and power station such as Avedøre Power Station.[34]
When describing alternating current (AC) electricity, another distinction is made between the watt and the volt-ampere. While these units are equivalent for simple resistive circuits, they differ when loads exhibit electrical reactance.